Solve all questions.
Show all work.
You may use any of the Laws of Logical Equivalences and/or Logical Equivalences for Propositional Logic and
Predicate Logic.
For any law of logical equivalence that you use, please indicate the law or the
logical equivalence number.
(1.) Prove the equivalence: $\neg[\forall x (p(x) \lor q(x))] \equiv \exists x(\neg p(x) \land \neg q(x))$
(2.) Prove the equivalence: $\neg[\forall x (p(x) \land q(x))] \equiv \exists x(\neg p(x) \lor \neg q(x))$
(3.) Prove the equivalence: $\neg[\exists x (p(x) \lor q(x))] \equiv \forall x(\neg p(x) \land \neg q(x))$
(4.) Prove the equivalence: $\neg[\exists x (p(x) \land q(x))] \equiv \forall x(\neg p(x) \lor \neg q(x))$
(5.) Prove the equivalence: $\forall x(\neg p(x) \land q(x)) \equiv \neg[\exists x (p(x) \lor \neg q(x))]$
(6.) Prove the equivalence: $\exists x(p(x) \lor \neg q(x)) \equiv \neg[\forall x (\neg p(x) \land q(x))]$
(7.) Prove the equivalence: $\forall x(\neg p(x) \land \neg q(x)) \equiv \neg[\exists x (\neg p(x) \rightarrow q(x))]$
(8.) Prove the equivalence: $\neg[\forall x (p(x) \rightarrow \neg q(x))] \equiv \exists x(p(x) \land q(x))$
(9.) Prove the equivalence: $\neg[\forall x (p(x) \lor (q(x) \lor r(x)))] \equiv \exists x(\neg p(x) \land (\neg q(x) \land \neg r(x)))$
(10.)
(11.) Prove the equivalence: $\neg[\exists x (\neg p(x) \lor (\neg q(x) \lor \neg r(x)))] \equiv \forall x(p(x) \land (q(x) \land r(x)))$
(12.)