For ACT Students
The ACT is a timed exam...$60$ questions for $60$ minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you
solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for a wrong answer.
For WASSCE Students
Any question labeled WASCCE is a question for the WASCCE General Mathematics
Any question labeled WASSCE:FM is a question for the WASSCE Further Mathematics/Elective Mathematics
Solve all questions.
Show all work.
Use at least two methods including Truth Tables and the Laws of Logical Equivalences for each question as
applicable.
For any law of logical equivalence that you use, please indicate the law or the
logical equivalence number.
$p$ | $q$ | $p \rightarrow q$ |
---|---|---|
$T$ | $T$ | $T$ |
$T$ | $F$ | $F$ |
$F$ | $T$ | $T$ |
$F$ | $F$ | $T$ |
(i) If Martin wins the race, then he has trained hard.
$q \rightarrow p$
$p$ | $q$ | $q \rightarrow p$ |
---|---|---|
$T$ | $T$ | $T$ |
$T$ | $F$ | $T$ |
$F$ | $T$ | $F$ |
$F$ | $F$ | $T$ |
(ii) If Martin does not train hard, then he will not win the race.
$\neg p \rightarrow \neg q$
$p$ | $q$ | $\neg p$ | $\neg q$ | $\neg p \rightarrow \neg q$ |
---|---|---|---|---|
$T$ | $T$ | $F$ | $F$ | $T$ |
$T$ | $F$ | $F$ | $T$ | $T$ |
$F$ | $T$ | $T$ | $F$ | $F$ |
$F$ | $F$ | $T$ | $T$ | $T$ |
(iii) If Martin does not win the race, then he has not trained hard.
$\neg q \rightarrow \neg p$
$p$ | $q$ | $\neg p$ | $\neg q$ | $\neg q \rightarrow \neg p$ |
---|---|---|---|---|
$T$ | $T$ | $F$ | $F$ | $T$ |
$T$ | $F$ | $F$ | $T$ | $F$ |
$F$ | $T$ | $T$ | $F$ | $T$ |
$F$ | $F$ | $T$ | $T$ | $T$ |
Conditional Statement (Main Question)
If Landi is in the hospital, then he has cholera.
$p \rightarrow q$
$p$ | $q$ | $p \rightarrow q$ |
---|---|---|
$T$ | $T$ | $T$ |
$T$ | $F$ | $F$ |
$F$ | $T$ | $T$ |
$F$ | $F$ | $T$ |
(i) If Landi is in the hospital, then he has cholera.
$q \rightarrow p$
$p$ | $q$ | $q \rightarrow p$ |
---|---|---|
$T$ | $T$ | $T$ |
$T$ | $F$ | $T$ |
$F$ | $T$ | $F$ |
$F$ | $F$ | $T$ |
(ii) If Landi is not in the hospital, then he does not have cholera.
$\neg q \rightarrow \neg p$
$p$ | $q$ | $\neg p$ | $\neg q$ | $\neg q \rightarrow \neg p$ |
---|---|---|---|---|
$T$ | $T$ | $F$ | $F$ | $T$ |
$T$ | $F$ | $F$ | $T$ | $F$ |
$F$ | $T$ | $T$ | $F$ | $T$ |
$F$ | $F$ | $T$ | $T$ | $T$ |
(iii) If Landi does not have cholera, then he is not in the hospital.
$\neg p \rightarrow \neg q$
$p$ | $q$ | $\neg p$ | $\neg q$ | $\neg p \rightarrow \neg q$ |
---|---|---|---|---|
$T$ | $T$ | $F$ | $F$ | $T$ |
$T$ | $F$ | $F$ | $T$ | $T$ |
$F$ | $T$ | $T$ | $F$ | $F$ |
$F$ | $F$ | $T$ | $T$ | $T$ |
$p$ | $q$ | $p \land q$ | $\neg p$ | $\neg p \lor q$ | $\neg(\neg p \lor q)$ | $(p \land q) \lor \neg(\neg p \lor q)$ |
---|---|---|---|---|---|---|
$T$ | $T$ | $T$ | $F$ | $T$ | $F$ | $T$ |
$T$ | $F$ | $F$ | $F$ | $F$ | $T$ | $T$ |
$F$ | $T$ | $F$ | $T$ | $T$ | $F$ | $F$ |
$F$ | $F$ | $F$ | $T$ | $T$ | $F$ | $F$ |
$p$ | $q$ | $p \lor q$ | $\neg(p \lor q)$ | $\neg p$ | $\neg p \land q$ | $\neg(p \lor q) \lor (\neg p \land q)$ |
---|---|---|---|---|---|---|
$T$ | $T$ | $T$ | $F$ | $F$ | $F$ | $F$ |
$T$ | $F$ | $T$ | $F$ | $F$ | $F$ | $F$ |
$F$ | $T$ | $T$ | $F$ | $T$ | $T$ | $T$ |
$F$ | $F$ | $F$ | $T$ | $T$ | $F$ | $T$ |
First | Same | Second | Same |
$p$ | $q$ | $p \rightarrow q$ | $\neg p$ | $\neg p \rightarrow q$ | $(\neg p \rightarrow q) \rightarrow q$ | $(p \rightarrow q) \rightarrow [(\neg p \rightarrow q) \rightarrow q]$ |
---|---|---|---|---|---|---|
$T$ | $T$ | $T$ | $F$ | $T$ | $T$ | $T$ |
$T$ | $F$ | $F$ | $F$ | $T$ | $F$ | $T$ |
$F$ | $T$ | $T$ | $T$ | $T$ | $T$ | $T$ |
$F$ | $F$ | $T$ | $T$ | $F$ | $T$ | $T$ |
First | Second | Tautology |
$p$ | $q$ | $r$ | $\neg r$ | $\neg r \land p$ | $\neg r \land p \land q$ | $\neg p$ | $\neg r \land \neg p$ | $\neg r \land \neg p \land q$ | $r \land q$ | $(\neg r \land p \land q) \lor (\neg r \land \neg p \land q) \lor (r \land q)$ |
---|---|---|---|---|---|---|---|---|---|---|
$T$ | $T$ | $T$ | $F$ | $F$ | $F$ | $F$ | $F$ | $F$ | $T$ | $T$ |
$T$ | $T$ | $F$ | $T$ | $T$ | $T$ | $F$ | $F$ | $F$ | $F$ | $T$ |
$T$ | $F$ | $T$ | $F$ | $F$ | $F$ | $F$ | $F$ | $F$ | $F$ | $F$ |
$T$ | $F$ | $F$ | $T$ | $T$ | $F$ | $F$ | $F$ | $F$ | $F$ | $F$ |
$F$ | $T$ | $T$ | $F$ | $F$ | $F$ | $T$ | $F$ | $F$ | $T$ | $T$ |
$F$ | $T$ | $F$ | $T$ | $F$ | $F$ | $T$ | $T$ | $T$ | $F$ | $T$ |
$F$ | $F$ | $T$ | $F$ | $F$ | $F$ | $T$ | $F$ | $F$ | $F$ | $F$ |
$F$ | $F$ | $F$ | $T$ | $F$ | $F$ | $T$ | $T$ | $F$ | $F$ | $F$ |
Same | First | Second | Third | Same |