Solve all questions.
Show all work.
You may use any of the Laws of Logical Equivalences and/or Logical Equivalences for Propositional Logic and
Predicate Logic.
For any law of logical equivalence that you use, please indicate the law or the
logical equivalence number.
(1.) Statement: The reciprocal of every negative real number is also negative.
Translate this statement into symbolic logic.
Determine the truth value.
(2.)
For Questions (3.) through (8.):
The domain of discourse is the set of all SNHU students.
Given the logical statements:
$p(x)$: $x$ is an scholar.
$q(x)$: $x$ likes Discrete Mathematics.
$r(x)$: $x$ plays basketball.
(I.) Determine the truth value of each English logical statement.
(II.) Translate each statement into symbolic logic.
(III.) Negate it.
(IV.) Apply De Morgan's Law
(V.) Translate the symbolic logic back to English language.
(VI.) Determine the truth value of the negation.
(3.) Every SNHU student plays basketball or likes Discrete Mathematics or both.
(4.) There exists at least one SNHU student who plays basketball and likes Discrete Mathematics.
(5.) Every SNHU student who is a scholar likes Discrete Mathematics.
(6.)
(7.)
(8.)
(9.) Statement: The reciprocal of every positive number less than or equal to one is greater than or equal to one.
Translate this statement into symbolic logic.
Determine the truth value.
(10.) Statement: There are two real numbers whose ratio is greater than three.
Translate this statement into symbolic logic.
Determine the truth value.
(11.) There is no greatest number.
(12.)