Solved Examples: All Measurements and Conversions

Samuel Dominic Chukwuemeka (SamDom For Peace) For ACT Students
The ACT is a timed exam...60 questions for 60 minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for any wrong answer.

For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.
Metric to Metric Conversions
Prefix Symbol Multiplication Factor
yocto y $10^{-24}$
zepto z $10^{-21}$
atto a $10^{-18}$
femto f $10^{-15}$
pico p $10^{-12}$
nano n $10^{-9}$
micro $\mu$ $10^{-6}$
milli m $10^{-3}$
centi c $10^{-2}$
deci d $10^{-1}$
deka da $10^1$
hecto h $10^2$
kilo K $10^3$
mega M $10^6$
giga G $10^9$
tera T $10^{12}$
peta P $10^{15}$
exa E $10^{18}$
zetta Z $10^{21}$
yotta Y $10^{24}$


Customary to Customary Conversions
Measurement Customary Customary Unit Conversion Factor
Length inch (in) foot (ft) $12\:inches = 1\:ft$
Length foot (ft) yard (yd) $3\:ft = 1\:yd$
Length yard (yd) mile (mi) $1760\:yd = 1\:mi$
Length foot (ft) mile (mi) $5280\:ft = 1\:mi$
Length rod/pole yards (yd) $1\:rod = 5.5\:yd$
Length furlong rod $1\:furlong = 40\;rod$
Length fathom feet (ft) $1\:fathom = 6\;ft$
Length league/marine nautical miles $1\:league = 3\;nautical\;\;miles$
Mass pound (lb) ounce (oz) $1\:lb = 16\:oz$
Mass short ton (ton) pound (lb) $1\:short\:ton = 2000\:lb$
Mass long ton pound (lb) $1\:long\:ton = 2240\:lb$
Mass stone pound (lb) $1\:\:stone = 14\:lb$
Mass long ton stone $1\:long\:ton = 160\:stones$
Area acre (acre) square feet ($ft^2$) $1\:acre = 43560\:ft^2$
Volume quart (qt) pint (pt) $1\:qt = 2\:pt$
Volume pint (pt) cup (cup) $1\:pt = 2\:cups$
Volume quart (qt) cup (cup) $1\:qt = 4\:cups$
Volume quart (qt) fluid ounce (fl. oz) $1\:qt = 32\:fl.\:oz$
Volume pint (pt) fluid ounce (fl. oz) $1\:pt = 16\:fl.\:oz$
Volume cup (cup) fluid ounce (fl. oz) $1\:cup = 8\:fl.\:oz$
Volume gallon (gal) quart (qt) $1\:gal = 4\:qt$
Volume gallon (gal) quart (pt) $1\:gal = 8\:pt$
Volume gallon (gal) cup (cup) $1\:gal = 16\:cups$
Volume gallon (gal) fluid ounce (fl. oz) $1\:gal = 128\:fl.\:oz$
Volume gallon (gal) cubic inches ($in^3$) $1\:gal = 231\:in^3$


Metric to Customary Conversions
Measurement Metric Customary Unit Conversion Factor
Length meter (m) foot (ft) $1\:ft = 0.3048\:m$
Length nautical miles kilometer (km) $1\:nautical\;\;mile = 1.852\;km$
Mass gram (g) pound (lb) $1\:lb = 453.59237\:g$
Mass metric ton (tonne) kilogram (kg) $1\:tonne = 1000\:kg$
Volume liter or cubic decimeters (L or $dm^3$) gallons (gal) $1\:L = 0.26417205\:gal$
Solve all questions.
Use at least two methods as applicable.
State the measurement.
Show all work.


NOTE: Unless specified otherwise:
(1.) Use only the tables provided for you.
(2.) Please do not approximate intermediate calculations.
(3.) Please do not approximate final calculations. Leave your final answer as is.
(1.) Explain the reasoning for how you would solve these questions:

(a.) The fact that 1 liter = 1.057 quarts can be expressed as:

(b.) You are given two pieces of​ information: (1) the volume of a lake in cubic feet and​ (2) the average depth of the lake in feet. You are asked to find the surface area of the lake in square feet. What should you​ do?

(c.) You want to know how much total energy is required to operate a​ 100-watt light bulb. Do you need any more​ information?

(d.) Which statement best describes a temperature of 110​°C?

(e.) The concentration of carbon dioxide in​ Earth's atmosphere might be stated in which​ units?

(f.) The guidelines for prescribing a particular drug specify a dose of 300 mg per kilogram of body weight per day.
How should you find how much of the drug should be given to a​ 30-kg child every 8​ hours?

(g.) What does a blood alcohol content​ (BAC) of 0.08​ gm/100 mL​ mean?


(a.) $\dfrac{1.057\;quart}{1\;liter}$ because multiplying it by any number of liters would convert the number from liters to quarts by causing the units of liters to cancel without changing number because the factor is equal to 1.
Dividing both sides of the given equation by 1​ liter, shows that the​ factor, $\dfrac{1.057\;quart}{1\;liter}$​, is equivalent to​ 1, allowing it to multiply and cancel the units of liter while leaving the units of quarts and without changing the value of the quantity.​ Therefore, multiplying by the factor only changes the units of what it multiplies.

(b.) Divide the volume by the​ depth, because this will cancel the depth in the volume and give feet square in the numerator which are the units for surface area.
Dividing the volume by the depth cancels a unit of feet from the​ numerator, so the numerator will have square​ feet, and the resulting number will be the area of the surface of the lake since it is the length multiplied by the width of the lake.

(c.) Yes; you need to know how long the light bulb is on because power is the rate at which energy is​ used, and watts are units of power.

(d.) Hot enough to boil​ water, since 110°C is above the boiling point of water.

(e.) Parts per million may be used because it gives the number of molecules of carbon dioxide in a million molecules of air.

(f.) 300 mg per kilogram of body weight per day: 30-kg child every 8​ hours
Convert day to hours: 1 day = 24 hours
So, this can be reworded as:
300 mg per kilogram of body weight per 24-hours: 30-kg child per 8​ hours

$ \underline{Unity\;\;Fraction\;\;Method} \\[3ex] \dfrac{300\;mg}{kg} * \dfrac{1}{24\;hours} * \dfrac{30\;kg} * \dfrac{8\;hours}{1} \\[5ex] $ Multiply 300​ mg/kg/day by 30 kg and divide that result by​ 3, since multiplying will cancel the kg units and dividing by 3 since there are three 8 hour intervals in a day.

(g.) A person with 4 liters of blood has 0.08 * 40 = 3.2 grams of alcohol in his blood because $ \dfrac{0.08g * 40}{100mL * 40} = \dfrac{3.2g}{4L} $
(2.) ACT The end-on view of a cylindrical milk tank on its support is shown in the figure below.
The interior radius of the tank's circular end is 4 feet.
The interior length of the tank is 25 feet.
Number 2

The tank currently holds 5,000 gallons of milk.
Each gallon of milk weighs about 8 pounds.
About how many pounds does this milk weigh?

$ F.\:\: 625 \\[3ex] G.\:\: 4,000 \\[3ex] H.\:\: 4,992 \\[3ex] J.\:\: 5,008 \\[3ex] K.\:\: 40,000 \\[3ex] $

Each gallon means $1$ gallon

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] Convert\:\:5000\:gallons\:\:to\:\:pounds \\[3ex] 5000\:gallons * \dfrac{.....pounds}{.....gallons} \\[5ex] 5000\:gallons * \dfrac{8\:pounds}{1\:gallon} \\[5ex] = \dfrac{5000 * 8}{1} \\[5ex] = 40,000\:pounds \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:the\:\:converted\:\:unit\:\:in\:\:pounds \\[3ex] $
gallons pounds
$1$ $8$
$5000$ $p$

$ \dfrac{p}{8} = \dfrac{5000}{1} \\[5ex] Cross\:\:Multiply \\[3ex] p * 1 = 8 * 5000 \\[3ex] p = 40,000\:pounds $
(3.) The New York Queens Zoo celebrated the birth of a Southern pudu deer in July of 2013.
The doe is a member of the world's smallest deer species and tipped the scale at a mere 0.45 kg.
Compared to the size of an average whitetail deer which typically weighs in between 4 and 8 pounds at birth, the pudu fawn is tiny.
The pudu deer enjoys a diet of leaves and grain and is an endangered species found primarily in Chile and Argentina.
When danger is present, the deer can be heard making a noise similar to a bark before jumping, sprinting, or climbing to safety.
(Source: "Pudu deer is world's smallest (and cutest?) deer." Christian Science Monitor. 9 Jul. 2013.)
Given that one kilogram is approximately equal to 2.2 pounds, about how many pounds did the pudu deer weigh at birth?


Measurement is Mass

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 0.45\;kg \:\:to\:\: lbs \\[3ex] = 0.45\;kg * \dfrac{...lbs}{...kg} \\[5ex] = 0.45\;kg * \dfrac{2.2\;lbs}{1\;kg} \\[5ex] = 0.99\;lbs $
Second Method: Proportional Reasoning Method
$kg$ $lbs$
$1$ $2.2$
$0.45$ $x$

$ \dfrac{2.2}{1} = \dfrac{x}{0.45} \\[5ex] Cross\:\:Multiply \\[3ex] 1(x) = 2.2(0.45) \\[3ex] x = 0.99\;lbs $
(4.) ACT There are 16 ounces in a pound.
If 1.5 pounds of hamburger costs $2.88, what is the cost per ounce?

$ F.\:\: \$0.12 \\[3ex] G.\:\: \$0.18 \\[3ex] H.\:\: \$0.88 \\[3ex] J.\:\: \$1.92 \\[3ex] K.\:\: \$4.32 \\[3ex] $

cost per ounce means what is the cost for $1$ ounce?
What are the three variables in question?
Ounce, Pounds, and Cost

Third Method: Fast Proportional Reasoning Method

ounce pounds cost$(\$)$
$16$ $1$
$x$ $1.5$ $2.88$
$1$ $y$

Let $x$ be the converted unit of $1.5$ pounds in ounce
Let $y$ be the cost of $1$ ounce
We need to find $y$...that is our goal.
But, before we find $y$, we have to find $x$
Use the first two rows to find $x$
Then, use the last two rows to find $y$

$ \dfrac{16}{x} = \dfrac{1}{1.5} \\[5ex] Cross\:\:Multiply \\[3ex] x(1) = 16(1.5) \\[3ex] x = 24\:ounces \\[3ex] Next: \\[3ex] \dfrac{x}{1} = \dfrac{2.88}{y} \\[5ex] \dfrac{24}{1} = \dfrac{2.88}{y} \\[5ex] Cross\:\:Multiply \\[3ex] 24(y) = 1(2.88) \\[3ex] 24y = 2.88 \\[3ex] y = \dfrac{2.88}{24} \\[5ex] y = \$0.12 \\[3ex] $ The cost per ounce is $\$0.12$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] Given: \\[3ex] 16\:ounces\:\:in\:\:a\:\:pound \\[3ex] 1.5\:pounds\:\:for\:\:\$2.88 \\[3ex] To\:\:find\:\:...cost(\$)\:\:per\:\:ounce \\[3ex] Set\:\:up\:\:first \\[3ex] \dfrac{.....\$}{.....lb} * \dfrac{.....lb}{.....oz} \\[5ex] = \dfrac{\$2.88}{1.5\:lb} * \dfrac{1\:lb}{16\:oz} \\[5ex] = \dfrac{2.88 * 1}{1.5 * 16} \\[5ex] = \dfrac{2.88}{24} \\[5ex] = \$0.12 $
(5.) A bag of garden soil weighs 42 pounds and holds 2 cubic feet.
Find the weight of 15 bags in kilograms and the volume of 15 bags in cubic yards.


(a.) Weight of 15 bags where 1 bag: 42 pounds (to kilograms)
First Method: Unity Fraction Method

$ 42\;pound * \dfrac{.......gram}{.......pound} * \dfrac{.......kilogram}{.......gram} \\[5ex] = 42\;pound * \dfrac{453.59237\;gram}{1\;pound} * \dfrac{1\;kilogram}{10^3\;gram} \\[5ex] = \dfrac{42 * 453.59237}{1000}\;kilogram \\[5ex] = 19.05087954\;kg \\[3ex] $ Second Method: Proportional Reasoning Method
Let $p$ be the weight of 15 bags in kilogram
bag kilogram
1 19.05087954
15 $p$

$ \dfrac{p}{15} = \dfrac{19.05087954}{1} \\[5ex] p(1) = 15(19.05087954) \\[3ex] p = 285.7631931\;kilograms \\[3ex] $ (b.) Volume of 15 bags where 1 bag: 2 cubic feet (to cubic yards)
First Method: Unity Fraction Method

$ 2\;ft * ft * ft * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} \\[5ex] = 2\;ft * ft * ft * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} \\[5ex] = \dfrac{2}{27}\;cubic\;\;yards \\[5ex] \approximately 0.0740740741\;yd^3 \\[3ex] $ Second Method: Proportional Reasoning Method
Let $k$ be the volume of 15 bags in cubic yards
bag cubic yards
1 0.0740740741
15 $k$

$ \dfrac{k}{15} = \dfrac{0.0740740741}{1} \\[5ex] k(1) = 15(0.0740740741) \\[3ex] k \approximately 1.111111111111\;yd^3 \\[3ex] $
(6.) ACT If you've traveled $x$ miles per hours for $3$ hours, how many miles have you traveled?

$ A.\:\: \dfrac{3}{x} \\[5ex] B.\:\: \dfrac{x}{3} \\[5ex] C.\:\: 3x \\[3ex] D.\:\: 60x \\[3ex] E.\:\: 180x \\[3ex] $

Per hour means 1 hour

Second Method: Proportional Reasoning Method
Let $y$ be the number of miles that you have traveled

$mi$ $hr$
$x$ $1$
$y$ $3$

$ \dfrac{x}{y} = \dfrac{1}{3} \\[5ex] Cross\:\:Multiply \\[3ex] y(1) = x(3) \\[3ex] y = 3x\:miles \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] x\dfrac{miles}{hr} * ....hr \\[5ex] x\dfrac{miles}{1\:hr} * 3\:hrs \\[5ex] = 3x\:miles \\[3ex] $ You've traveled $3x$ miles
(7.) ACT How many minutes would it take a car to travel 120 miles at a constant speed of 50 miles per hour?
(Note: There are 60 minutes in 1 hour.)

$ F.\:\: 25 \\[3ex] G.\:\: 42 \\[3ex] H.\:\: 70 \\[3ex] J.\:\: 100 \\[3ex] K.\:\: 144 \\[3ex] $

Measurement is Speed

Per hour means 1 hour
50 miles per hour means 50 miles in 1 hour
Let x be the number of hours it would take a car to travel 120 miles at a constant speed of 50 miles per hour.
Let y be number of minutes it would take a car to travel 120 miles at a constant speed of 50 miles per hour.

$ \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] $
$miles$ $hour$
$50$ $1$
$120$ $x$

$ \dfrac{50}{120} = \dfrac{1}{x} \\[5ex] Cross\:\:Multiply \\[3ex] 50x = 120(1) \\[3ex] 50x = 120 \\[3ex] x = \dfrac{120}{50} \\[5ex] x = \dfrac{12}{5}\:\:hours \\[5ex] $
$minutes$ $hours$
$60$ $1$
$y$ $\dfrac{12}{5}$

$ \dfrac{60}{y} = 1 \div \dfrac{12}{5} \\[5ex] \dfrac{60}{y} = 1 * \dfrac{5}{12} \\[5ex] \dfrac{60}{y} = \dfrac{5}{12} \\[5ex] Cross\:\:Multiply \\[3ex] 5y = 60(12) \\[3ex] y = \dfrac{60(12)}{5} \\[5ex] y = 12(12) \\[3ex] y = 144\:\:minutes \\[3ex] $ Student: This is a long method.
Is there any faster way to do this question or this kind of questions?
I mean...this is ACT...so we have to solve a question in a minute.
Teacher: Yes!
Good Question
We can use the Fast Proportional Reasoning Method
Or you can just invent your own method.
Yes, you can!!!


Third Method: Fast Proportional Reasoning Method
Let $p$ be the number of minutes it would take a car to travel $120$ miles at a constant speed of $50$ miles per hour.

miles minutes hour
$50$ $60$ $1$
$120$ $p$

$ \dfrac{p}{60} = \dfrac{120}{50} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:60 \\[3ex] 60 * \dfrac{p}{60} = 60 * \dfrac{120}{50} \\[5ex] p = 12 * 12 \\[3ex] p = 144\:\:minutes \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] Given: \\[3ex] 50\:miles\:per\:hour \\[3ex] 60\:minutes \\[3ex] 1\:hour \\[3ex] 120\:miles \\[3ex] To\:\:find\:\:...minutes \\[3ex] Set\:\:up\:\:first \\[3ex] 120\:miles * \dfrac{.....hour}{.....miles} * \dfrac{.....minutes}{.....hour} \\[5ex] = 120\:miles * \dfrac{1\:hour}{50\:miles} * \dfrac{60\:minutes}{1\:hour} \\[5ex] = \dfrac{120 * 60}{50} \\[5ex] = \dfrac{7200}{50} \\[5ex] = 144\:\:minutes $
(8.) ACT Vanna walked at a rate of $2$ miles per hour for $10$ minutes and then walked at a rate of $3$ miles per hour for $5$ minutes.
Which of the following gives the average rate, in miles per hour, at which she walked over this $15-minute$ period?

$ F.\:\: \dfrac{1}{3} \\[5ex] G.\:\: \dfrac{7}{3} \\[5ex] H.\:\: \dfrac{7}{24} \\[5ex] J.\:\: \dfrac{7}{180} \\[5ex] K.\:\: \dfrac{35}{2} \\[5ex] $

The question asked us to calculate the average in miles per hour

(1.) So, we shall be converting all minutes to hours

The question asked us for the average. So, we shall:

(2.) Calculate the distance, in miles for the first trip.

(3.) Calculate the distance, in miles for the second trip.

(4.) Find the total distance, in miles.

(5.) Divide it by the total time, in hours.

That will give us the average rate, in miles per hour.

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] Per\:hr\:\:means\:\:1\:hr \\[3ex] \underline{First\:\:Trip} \\[3ex] 10\:min\:to\:\:hour \\[3ex] 10\:min * \dfrac{.....hr}{.....min} \\[5ex] = 10\:min * \dfrac{1\:hr}{60\:min} \\[5ex] = \dfrac{1}{6}\:hr \\[5ex] 2\:miles\:per\:hour\:\:for\:\:\dfrac{1}{6}\:hr \\[5ex] = 2 * \dfrac{1}{6} \\[5ex] = \dfrac{1}{3}\:miles \\[5ex] \underline{Second\:\:Trip} \\[3ex] 5\:min\:to\:\:hour \\[3ex] = 5\:min * \dfrac{1\:hr}{60\:min} \\[5ex] = \dfrac{1}{12}\:hr \\[5ex] 3\:miles\:per\:hour\:\:for\:\:\dfrac{1}{12}\:hr \\[5ex] = 3 * \dfrac{1}{12} \\[5ex] = \dfrac{1}{4}\:miles \\[5ex] \underline{Total\:\:Distance} \\[3ex] Total\:\:Distance = \dfrac{1}{3} + \dfrac{1}{4} \\[5ex] = \dfrac{4}{12} + \dfrac{3}{12} \\[5ex] = \dfrac{4 + 3}{12} \\[5ex] = \dfrac{7}{12}\:miles \\[5ex] \underline{Total\:\:Time} \\[5ex] 15\:min\:to\:\:hour \\[3ex] = 15\:min * \dfrac{1\:hr}{60\:min} \\[5ex] = \dfrac{1}{4}\:hr \\[5ex] \underline{Average\:\:Speed\:(mph)} \\[3ex] Average\:\:Speed = \dfrac{Total\:\:Distance}{Total\:\:Time} \\[5ex] = \dfrac{\dfrac{7}{12}}{\dfrac{1}{4}} \\[10ex] = \dfrac{7}{12} \div \dfrac{1}{4} \\[5ex] = \dfrac{7}{12} * \dfrac{4}{1} \\[5ex] = \dfrac{7}{3}\:\:miles\:\:per\:\:hour \\[5ex] $ Third Method: Fast Proportional Reasoning Method

Let:
$d$ = number of hours for $10$ minutes
$c$ = miles per hour for $d$ hours
$f$ = number of hours for $5$ minutes
$e$ = miles per hour for $f$ hours
$h$ = number of hours for $15$ minutes

miles hour minutes
$2$ $1$ $60$
$c$ $d$ $10$
$3$ $1$ $60$
$e$ $f$ $5$
$1$ $60$
$h$ $15$

$ \dfrac{d}{1} = \dfrac{10}{60} \\[5ex] d = \dfrac{1}{6}\:hours \\[5ex] \dfrac{c}{2} = \dfrac{d}{1} \\[5ex] \dfrac{c}{2} = \dfrac{\dfrac{1}{6}}{1} \\[7ex] \dfrac{c}{2} = \dfrac{1}{6} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:2 \\[3ex] 2 * \dfrac{c}{2} = 2 * \dfrac{1}{6} \\[5ex] c = \dfrac{1}{3}\:mph \\[5ex] \dfrac{f}{1} = \dfrac{5}{60} \\[5ex] f = \dfrac{1}{12}\:hours \\[5ex] \dfrac{e}{3} = \dfrac{f}{1} \\[5ex] \dfrac{e}{3} = \dfrac{\dfrac{1}{12}}{1} \\[7ex] \dfrac{e}{3} = \dfrac{1}{12} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:3 \\[3ex] 3 * \dfrac{e}{3} = 3 * \dfrac{1}{12} \\[5ex] e = \dfrac{1}{4}\:mph \\[5ex] \dfrac{h}{1} = \dfrac{15}{60} \\[5ex] h = \dfrac{1}{4}\:hours \\[5ex] Average\:\:Speed = \dfrac{Distance}{Time} \\[5ex] = \dfrac{c + e}{h} \\[5ex] = (c + e) \div h \\[3ex] = \left(\dfrac{1}{3} + \dfrac{1}{4}\right) \div \dfrac{1}{4} \\[5ex] = \left(\dfrac{4}{12} + \dfrac{3}{12}\right) \div \dfrac{1}{4} \\[5ex] = \dfrac{4 + 3}{12} \div \dfrac{1}{4} \\[5ex] = \dfrac{7}{12} * \dfrac{4}{1} \\[5ex] = \dfrac{7}{3}\:mph $
(9.) The Minnesota Vikings broke ground in October 2013 for a grand stadium to play in during their home games.
A budget of $975 million is not going as far as hoped for all the amenities that were originally planned and some items will be trimmed to stay within budget.
Some of the items that were trimmed were a restaurant past center field which was replaced with more outfield seats.
Convert the stadium square footage of 900 thousand square feet to square meters.
(Round your answer to the nearest thousand square meters).

Source: (Florio, M. "Vikings stadium will be losing some bells and whistles." NBC Sports. 10 Oct. 2013. Retrieved from http://profootballtalk.nbcsports.com/2013/10/10/vikings-stadium-will-be-losing-some-bells-and-whistles/)


The question wants us to convert 900,000 ft² to m²
Measurement: Area
First Method: Unity Fraction Method

$ 900000\;ft * ft * \dfrac{.......m}{.......ft} * \dfrac{.......m}{.......ft} \\[5ex] = 900000\;ft * ft * \dfrac{0.3048\;m}{1\;ft} * \dfrac{0.3048\;m}{1\;ft} \\[5ex] = 83612.736\;m^2 \\[3ex] $ Second Method: Proportional Reasoning Method
Let $p$ represent the area of 900,000 ft² in m²

$ 1\;ft = 0.3048\;m \\[3ex] \implies \\[3ex] (1\;ft)^2 = (0.3048\;m)^2 \\[3ex] 1^2\;ft^2 = (0.3048)^2\;m^2 \\[3ex] 1\;ft^2 = 0.09290304\;m^2 \\[3ex] $
ft²
1 0.09290304
900000 $p$

$ \dfrac{p}{0.09290304} = \dfrac{900000}{1} \\[5ex] p * 1 = 0.09290304 * 900000 \\[3ex] p = 83612.736\;m^2 \\[3ex] $ 900,000 ft² = 83612.736 m²
(10.) ACT Walter recently vacationed in Paris.
While there, he visited the Louvre, a famous art museum.
Afterward, he took a $3.7-kilometer$ cab ride from the Louvre to the Eiffel Tower.
A tour guide named Amélie informed him that $2.5$ million rivets were used to build the tower, which stands $320$ meters tall.

Walter's cab ride lasted $15$ minutes.
Which of the following values is closest to the average speed, in miles per hour, of the cab?
(Note: $1\:mile \approx 1.6\:kilometers)$

$ F.\:\: 9 \\[3ex] G.\:\: 15 \\[3ex] H.\:\: 21 \\[3ex] J.\:\: 24 \\[3ex] K.\:\: 35 \\[3ex] $

We are going to use what we were given, rather than using the Tables.

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 3.7\:km/15\:min\:\:to\:\:miles/hr \\[3ex] \dfrac{3.7\:km}{15\:min} * \dfrac{....miles}{....km} * \dfrac{....min}{....hr} \\[5ex] = \dfrac{3.7\:km}{15\:min} * \dfrac{1\:mile}{1.6\:km} * \dfrac{60\:min}{1\:hr} \\[5ex] = \dfrac{3.7 * 1 * 60}{15 * 1.6 * 1} \\[5ex] = \dfrac{222}{24} \\[5ex] = 9.25\:mph \approx 9\:mph \\[3ex] $ Third Method: Fast Proportional Reasoning Method

Let:
$x$ = number of hours for $15$ minutes
$y$ = number of miles for $3.7$ kilometers

$km$ $miles$ $min$ $hr$
$1.6$ $1$ $60$ $1$
$3.7$ $y$ $15$ $x$

$ \dfrac{x}{1} = \dfrac{15}{60} \\[5ex] x = \dfrac{1}{4} \\[5ex] x = 0.25\:hr \\[3ex] \dfrac{y}{1} = \dfrac{3.7}{1.6} \\[5ex] y = 2.3125\:miles \\[3ex] Average\:\:Speed = \dfrac{Distance}{Time} \\[5ex] = \dfrac{2.3125\:miles}{0.25\:hr} \\[5ex] = 9.25\:mph \approx 9\:mph \\[3ex] $ The average speed is approximately $9$ miles per hour.
(11.) A basement for a $26$ feet by $32$ feet house is to be dug at a depth of $3$ feet.
How many cubic yards of earth need to be hauled away?
Assume the surface of the ground is level.


$ Volume = 26\:ft * 32\:ft * 3\:ft \\[3ex] = 2496\:ft^3 \\[3ex] Convert\:\: 2496\:ft^3 \:\:to\:\: yd^3 \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 2496\:ft^3\:\:to\:\:yd^3 \\[3ex] 2496\:ft * ft * ft * \dfrac{.....yd}{.....ft} * \dfrac{.....yd}{.....ft} * \dfrac{.....yd}{.....ft} \\[5ex] 2496\:ft * ft * ft * \dfrac{1\:yd}{3\:ft} * \dfrac{1\:yd}{3\:ft} * \dfrac{1\:yd}{3\:ft} \\[5ex] = \dfrac{2496 * 1 * 1 * 1}{3 * 3 * 3} \\[5ex] = \dfrac{2496}{27} \\[5ex] = 92.4444444\:yd^3 \\[3ex] $ Second Method: Proportional Reasoning Method

Let $c$ = converted unit from $ft^3$ to $yd^3$

$ 3\:ft = 1\:yd \\[3ex] Cube\:\:both\:\:sides \\[3ex] (3\:ft)^3 = (1\:yd)^3 \\[3ex] 3^3 * ft^3 = 1^3 * yd^3 \\[3ex] 27\:ft^3 = 1\:yd^3 \\[3ex] $
$ft^3$ $yd^3$
$27$ $1$
$2496$ $c$

$ \dfrac{c}{1} = \dfrac{2496}{27} \\[5ex] c = 92.4444444\:yd^3 \\[3ex] \therefore 2496\:ft^3 = 92.4444444\:yd^3 $
(12.) ACT Tameka calculates that she needs $360$ square feet of new carpet.
But the type of carpet that she wants is priced by the square yard.
How many square yards of carpet does she need?

$ F.\:\: 15 \\[3ex] G.\:\: 40 \\[3ex] H.\:\: 60 \\[3ex] J.\:\: 90 \\[3ex] K.\:\: 120 \\[3ex] $

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 360\:ft^2\:\:to\:\:yd^2 \\[3ex] 360\:ft * ft * \dfrac{.....yd}{.....ft} * \dfrac{.....yd}{.....ft} \\[5ex] 360\:ft * ft * \dfrac{1\:yd}{3\:ft} * \dfrac{1\:yd}{3\:ft} \\[5ex] = \dfrac{360 * 1 * 1}{3 * 3} \\[5ex] = \dfrac{360}{9} \\[5ex] = 40\:yd^2 \\[3ex] $ Second Method: Proportional Reasoning Method

Let $c$ = converted unit from $ft^2$ to $yd^2$

$ 3\:ft = 1\:yd \\[3ex] Square\:\:both\:\:sides \\[3ex] (3\:ft)^2 = (1\:yd)^2 \\[3ex] 3^2 * ft^2 = 1^2 * yd^2 \\[3ex] 9\:ft^2 = 1\:yd^2 \\[3ex] $
$ft^2$ $yd^2$
$9$ $1$
$360$ $c$

$ \dfrac{c}{1} = \dfrac{360}{9} \\[5ex] c = 40\:yd^2 \\[3ex] \therefore 360\:ft^2 = 40\:yd^2 $
(13.) When Ibuprofen is given for fever to children 6 months of age up to 2 years, the usual dosage is 5 milligrams (mg) per kilogram (kg) of body weight when the fever is under 102.5 degrees Fahrenheit.
How much medicine would be usual dose for an 18 month old weighing 26 pounds?


Per $kg$ means $1\:kg$
Recommended dosage: $5\:mg$ per $kg$ of body weight.
But: We were given $26$ pounds of body weight, rather than $kg$ of body weight
And asked to find the recommended dosage
This means that we need to find the equivalent of $26\:lb$ in $kg$
So, we need to convert $26\:lb$ to $kg$
Let us use the First Method to convert pounds to kilogram.
But, you can use any method you prefer.

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 26\:lb\:\:to\:\:kg \\[3ex] 26\:lb * \dfrac{.....g}{.....lb} * \dfrac{.....kg}{.....g} \\[5ex] 26\:lb * \dfrac{453.59237\:g}{1\:lb} * \dfrac{1\:kg}{1000\:g} \\[5ex] = \dfrac{26 * 453.59237 * 1}{1 * 1000} \\[5ex] = \dfrac{11793.4016}{1000} \\[5ex] = 11.7934016\:kg \\[3ex] $ We have found the equivalent of $26$ pounds in kilograms
Next, we need to find the recommended dosage for that weight.
Let use the Second Method to find it.

Second Method: Proportional Reasoning Method

Let $d$ = recommended dosage for a weight of $11.7934016$ kilograms

Prescribed ($mg$) Body Weight ($kg$)
$5$ $1$
$d$ $11.7934016$

$ \dfrac{d}{5} = \dfrac{11.7934016}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:5 \\[3ex] 5 * \dfrac{d}{5} = 5 * \dfrac{11.7934016}{1} \\[5ex] d = 5(11.7934016) \\[3ex] d = 58.967008\:mg \approx 59\:mg \\[3ex] $ The recommended dosage of Ibuprofen for an $18$ month old weighing $26$ pounds is $59\:mg$
(14.) When Ibuprofen is given for fever to children 6 months of age up to 2 years, the usual dose is 5 milligrams (mg) per kilogram (kg) of body weight when the fever is under 102.5 degrees Fahrenheit.
How much medicine would be usual dose for an 18 month old weighing 19 pounds?
$1\:kg = 2.2\:pounds$


Ask students to list at least two differences between Question $13$ and Question $14$

Per $kg$ means $1\:kg$
Recommended dosage: $5\:mg$ per $kg$ of body weight.
But: We were given $19$ pounds of body weight, rather than $kg$ of body weight
And asked to find the recommended dosage
This means that we need to find the equivalent of $19\:lb$ in $kg$
So, we need to convert $19\:lb$ to $kg$
Let us use the First Method to convert pounds to kilogram.
But, you can use any method you prefer.

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 19\:lb\:\:to\:\:kg \\[3ex] 19\:lb * \dfrac{.....kg}{.....lb} \\[5ex] 19\:lb * \dfrac{1\:kg}{2.2\:lb} \\[5ex] = \dfrac{19 * 1}{2.2} \\[5ex] = \dfrac{19}{2.2} \\[5ex] = 8.63636364\:kg \\[3ex] $ We have found the equivalent of $19$ pounds in kilograms
Next, we need to find the recommended dosage for that weight.
Let use the Second Method to find it.

Second Method: Proportional Reasoning Method

Let $d$ = recommended dosage for a weight of $11.7934016$ kilograms

Prescribed ($mg$) Body Weight ($kg$)
$5$ $1$
$d$ $8.63636364$

$ \dfrac{d}{5} = \dfrac{8.63636364}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:5 \\[3ex] 5 * \dfrac{d}{5} = 5 * \dfrac{8.63636364}{1} \\[5ex] d = 5(8.63636364) \\[3ex] d = 43.1818182\:mg \approx 43\:mg \\[3ex] $ The recommended dosage of Ibuprofen for an $18$ month old weighing $19$ pounds is $43\:mg$
(15.) A medication (drink) calls for $200$ grams of sugar, $2$ liters of water, and $1$ package of a prepared medicine.
While gathering the items, Rita realizes that there is only $100$ grams of sugar available.
How can Rita still make the drink so that it has the correct concentration?


Third Method: Fast Proportional Reasoning Method
Let $x$ be the equivalent amount of water for $100$ grams of sugar

Let $y$ be the equivalent amount of medicine for $100$ grams of sugar

Sugar ($g$) Water ($L$) Medicine (package)
$200$ $2$ $1$
$100$ $x$ $y$

$ \underline{Water} \\[3ex] \dfrac{x}{2} = \dfrac{100}{200} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:2 \\[3ex] 2 * \dfrac{x}{2} = 2 * \dfrac{100}{200} \\[5ex] x = \dfrac{2 * 100}{200} \\[5ex] x = \dfrac{200}{200} \\[5ex] x = 1\:L \\[3ex] Similarly: \\[3ex] \underline{Medicine} \\[3ex] \dfrac{y}{1} = \dfrac{100}{200} \\[5ex] y = \dfrac{1}{2}\:package \\[5ex] $ To maintain the same concentration, Rita should use a liter of water and one-half package of the medicine with the hundred grams of sugar.
(16.) As a nurse, part of the daily duties of Deborah is to mix medications in the proper proportions for patients.
For one of her regular patients, she always mixes Medication $A$ with Medication $B$ in the same proportion.
Last week, her patient's doctor indicated that she should mix $90$ milligrams of Medication $A$ with $27$ milligrams of Medication $B$.
However, this week, the doctor said she should only use $24$ milligrams of Medication $B$.
How many milligrams of Medication $A$ should be mixed this week?


Second Method: Proportional Reasoning Method

Let $A$ = amount of Medication $A$ in milligrams

Medication $A$($mg$) Medication $B$($mg$)
$90$ $27$
$A$ $24$

$ \dfrac{A}{90} = \dfrac{24}{27} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:90 \\[3ex] 90 * \dfrac{A}{90} = 90 * \dfrac{24}{27} \\[5ex] A = \dfrac{90 * 24}{27} \\[5ex] A = \dfrac{90 * 8}{9} \\[5ex] A = 10 * 8 \\[3ex] A = 80\:mg \\[3ex] $ Deborah should use $80\:mg$ of Medication $A$
(17.) Pediatricians prescribe $7$ milliliters ($mL$) of acetaminophen for $35$ pounds of a child's weight.
How many milliliters of acetaminophen will a pediatrician prescribe for Timothy, who weighs $60$ pounds?


Second Method: Proportional Reasoning Method

Let $p$ = prescription dosage for Timothy

Prescribed ($mL$) Weight ($pounds$)
$7$ $35$
$p$ $60$

$ \dfrac{p}{7} = \dfrac{60}{35} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:7 \\[3ex] 7 * \dfrac{p}{7} = 7 * \dfrac{60}{35} \\[5ex] p = \dfrac{60}{5} \\[5ex] p = 12\:mL \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 60\:lb * \dfrac{.....mL}{.....lb} \\[5ex] 60\:lb * \dfrac{7\:mL}{35\:lb} \\[5ex] = \dfrac{60}{5} \\[5ex] = 12\:mL \\[3ex] $ The pediatrician will prescribe $12\:mL$ of acetaminophen for Timothy.
(18.) A veterinarian prescribed to Smart, a $70-pound$ dog, an antibacterial medicine in case an infection emerges after her teeth were cleaned.
If the dosage is $7\:mg$ for every pound, how much medicine was Smart given?


Every pound means every $1$ pound

Second Method: Proportional Reasoning Method

Let $d$ = prescription dosage for Smart

Prescribed ($mg$) Weight ($pounds$)
$7$ $1$
$d$ $70$

$ \dfrac{d}{7} = \dfrac{70}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:7 \\[3ex] 7 * \dfrac{d}{7} = 7 * 70 \\[5ex] d = 490\:mg \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 70\:lb * \dfrac{.....mg}{.....lb} \\[5ex] 70\:lb * \dfrac{7\:mg}{1\:lb} \\[5ex] = 70 * 7 = 490\:mg \\[3ex] $ Smart was given $490\:mg$ of the antibacterial medicine.
(19.) Convert 1056 feet per second to mile per hour.


$ mph\:\:means\:\:miles\:\:per\:\:hour \\[3ex] mi/hr\:\:also\:\:means\:\:miles\:\:per\:\:hour \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 1056\:ft/s\:\:to\:\:mi/hr \\[3ex] 1056\dfrac{ft}{s} * \dfrac{.....miles}{.....ft} * \dfrac{.....s}{.....min} * \dfrac{.....min}{.....hr} \\[5ex] 1056\dfrac{ft}{s} * \dfrac{1\:mile}{5280\:ft} * \dfrac{60\:s}{1\:min} * \dfrac{60\:min}{1\:hr} \\[5ex] = \dfrac{1056 * 1 * 60 * 60}{5280 * 1 * 1} \\[5ex] = \dfrac{3801600}{5280} \\[5ex] = 720\:mph \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Per\:\:second\:\:means\:\:1\:\:second \\[3ex] Per\:\:hour\:\:means\:\:1\:\:hour \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:miles \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hour \\[3ex] Let\:\:k\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:60\:s \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:1\:s \\[3ex] \dfrac{1056\:ft}{1\:s} = \dfrac{x\:mile}{y\:hr} \\[5ex] $
Numerator
$ft$ $mile$
$5280$ $1$
$1056$ $x$

$ \dfrac{x}{1} = \dfrac{1056}{5280} \\[5ex] x = 0.2\:mile \\[3ex] $
Denominator
$s$ $min$ $hr$
$60$ $1$ $k$
$60$ $1$
$1$ $y$

$ \dfrac{1}{60} = \dfrac{k}{1} \\[5ex] \dfrac{1}{60} = k \\[5ex] k = \dfrac{1}{60} \\[5ex] Next: \\[3ex] \dfrac{60}{1} = \dfrac{k}{y} \\[5ex] Cross\:\:Multiply \\[3ex] 60y = k(1) \\[3ex] 60y = k \\[3ex] y = \dfrac{k}{60} \\[5ex] y = k \div 60 \\[3ex] y = \dfrac{1}{60} \div \dfrac{60}{1} \\[5ex] y = \dfrac{1}{60} * \dfrac{1}{60} \\[5ex] y = \dfrac{1 * 1}{60 * 60} \\[5ex] y = \dfrac{1}{3600} \\[5ex] \implies 1\:s = \dfrac{1}{3600}\:hr \\[5ex] \dfrac{x\:mi}{y\:hr} = x \div y \\[5ex] = 0.2 \div \dfrac{1}{3600} \\[5ex] = 0.2 * \dfrac{3600}{1} \\[5ex] = 0.2(3600) \\[3ex] = 720\:mi/hr \\[3ex] \therefore 1056\:ft/s = 720\:mph $
(20.) Convert 3168 feet per minute to mile per second.


$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 3168\:ft/min\:\:to\:\:mi/s \\[3ex] 3168\dfrac{ft}{min} * \dfrac{.....miles}{.....ft} * \dfrac{.....min}{.....s} \\[5ex] 3168\dfrac{ft}{min} * \dfrac{1\:mile}{5280\:ft} * \dfrac{1\:min}{60\:s} \\[5ex] = \dfrac{3168 * 1 * 1}{5280 * 60} \\[5ex] = \dfrac{3168}{316800} \\[5ex] = 0.01\:mile/second \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Per\:\:second\:\:means\:\:1\:\:second \\[3ex] Per\:\:minute\:\:means\:\:1\:\:hour \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:miles \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:second \\[3ex] \dfrac{3168\:ft}{1\:min} = \dfrac{x\:mile}{y\:s} \\[5ex] $
Numerator
$ft$ $mile$
$5280$ $1$
$3168$ $x$

$ \dfrac{x}{1} = \dfrac{3168}{5280} \\[5ex] x = 0.6\:mile \\[3ex] \underline{Denominator} \\[3ex] 1\:min = 60\:s \\[3ex] \implies y = 60\:s \\[3ex] \dfrac{x\:mi}{y\:s} = x \div y \\[5ex] = \dfrac{0.6}{60} \\[5ex] = 0.01\:mile/second \\[3ex] \therefore 3186\:ft/m = 0.01\:mi/s $




Top




(21.) ACT In decorating baskets for a retirement party, Rudy needs the following amounts of ribbons for each basket:
number of ribbons length of "each" ribbon (inches)
$5$ $8$
$3$ $16$
$2$ $10$

If the ribbon costs $0.98 per yard, which of the following would be the approximate cost of ribbon for $10$ baskets?
(Note: $1$ yard = $36$ inches)

$ F.\:\: \$3 \\[3ex] G.\:\: \$9 \\[3ex] H.\:\: \$30 \\[3ex] J.\:\: \$35 \\[3ex] K.\:\: \$90 \\[3ex] $

$ \underline{One\:\:Basket} \\[3ex] Total\:\:Length\:\:of\:\:5\:\:ribbons = 5(8) = 40\:inches \\[3ex] Total\:\:Length\:\:of\:\:3\:\:ribbons = 3(16) = 48\:inches \\[3ex] Total\:\:Length\:\:of\:\:2\:\:ribbons = 2(10) = 20\:inches \\[3ex] Total\:\:Length = 40 + 48 + 20 = 108\:inches \\[3ex] \underline{Ten\:\:Baskets} \\[3ex] Total\:\:Length = 108(10) = 1080\:inches \\[3ex] Convert\:\:1080\:inches\:\:to\:\:yards \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 1080\:inches * \dfrac{.....yd}{.....in} \\[5ex] = 1080\:inches * \dfrac{1\:yd}{36\:inches} \\[5ex] = 30\:yards \\[3ex] Per\:\:yard\:\:means\:\:1\:\:yard \\[3ex] Cost\:\:of\:\:1\:\:yard = \$0.98 \\[3ex] Cost\:\:of\:\:30\:yards\:\:@\:\:\$0.98\:\:per\:\:yard \\[3ex] = 30 * 0.98 \\[3ex] = \$29.4 \approx \$30 \\[3ex] $ In this case, it is in order to approximate to $\$30$ rather than $\$29$ because who will pay that $40$ cents?
(22.) ACT Car $A$ travels $60$ miles per hour for $1\dfrac{1}{2}$ hours; Car $B$ travels $40$ miles per hour for $2$ hours.
What is the difference between the number of miles traveled by Car $A$ and the number of miles traveled by Car $B$?

$ F.\:\: 0 \\[3ex] G.\:\: 10 \\[3ex] H.\:\: 80 \\[3ex] J.\:\: 90 \\[3ex] K.\:\: 170 \\[3ex] $

Per hour means $1$ hour

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] \underline{Car\:\:A} \\[3ex] 60\:\dfrac{miles}{1\:hr} * ....hr \\[5ex] \dfrac{60\:miles}{1\:hr} * 1\dfrac{1}{2}\:hrs \\[5ex] = 60\:\dfrac{miles}{1\:hr} * \dfrac{3}{2}\:hrs \\[5ex] = 30 * 3 \\[3ex] = 90\:miles \\[3ex] \underline{Car\:\:B} \\[3ex] 40\:\dfrac{miles}{1\:hr} * ....hr \\[5ex] \dfrac{40\:miles}{1\:hr} * 2\:hrs \\[5ex] = 40 * 2 \\[3ex] = 80\:miles \\[3ex] \underline{Difference\:\:in\:\:miles\:\:between\:\:Car\:\:A\:\:and\:\:Car\:\:B} \\[3ex] Difference = 90 - 80 = 10\:miles $
(23.) ACT A road map is drawn to scale so that 1.5 inches represents 90 miles.
How many miles does 1.6 inches represent?

$ F.\:\: 91 \\[3ex] G.\:\: 96 \\[3ex] H.\:\: 99 \\[3ex] J.\:\: 100 \\[3ex] K.\:\: 106 \\[3ex] $

Second Method: Proportional Reasoning Method

Let $c$ = number of miles represented by $1.6\:inches$

inches miles
$1.5$ $90$
$1.6$ $c$

$ \dfrac{c}{1.6} = \dfrac{90}{1.5} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:1.6 \\[3ex] 1.6 * \dfrac{c}{1.6} = 1.6 * \dfrac{90}{1.5} \\[5ex] c = \dfrac{1.6 * 90}{1.5} \\[5ex] c = \dfrac{144}{1.5} \\[5ex] c = 96\:miles \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 1.6\:inches * \dfrac{.....miles}{.....inches} \\[5ex] 1.6\:inches * \dfrac{90\:miles}{1.5\:inches} \\[5ex] = \dfrac{1.6 * 90}{1.5} \\[5ex] = \dfrac{144}{1.5} \\[5ex] = 96\:miles $
(24.) ACT A stone is a unit of weight equivalent to 14 pounds.
If a person weighs 177 pounds, how many stone, to the nearest tenth, does this person weigh?

$ A.\:\: 247.8 \\[3ex] B.\:\: 126.4 \\[3ex] C.\:\: 79.1 \\[3ex] D.\:\: 12.6 \\[3ex] E.\:\: 7.9 \\[3ex] $

Unit of weight means $1$ weight
This means that $1\:stone = 14\:lbs$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] Convert\:\:177\:lbs\:\:to\:\:stone \\[3ex] 177\:lbs * \dfrac{.....stone}{.....lbs} \\[5ex] 177\:lbs * \dfrac{1\:stone}{14\:lbs} \\[5ex] = \dfrac{177 * 1}{14} \\[5ex] = 12.6428571\:stone \approx 12.6\:stone \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:the\:\:converted\:\:unit\:\:in\:\:stone \\[3ex] $
stone pounds
$1$ $14$
$p$ $177$

$ \dfrac{p}{1} = \dfrac{177}{14} \\[5ex] p = 12.6428571\:stone \approx 12.6\:stone \\[3ex] \therefore 177\:lbs = 12.6428571\:stone $
(25.) ACT A truck sprang a leak at the bottom of its radiator, which held $480$ ounces of fluid when it started to leak, and started losing radiator fluid at a constant rate of $4$ ounces per minute.
Suppose that the radiator continued to leak at this constant rate and that the truck, traveling at $35$ miles per hour, could continue traveling at this rate until its radiator was completely empty.
In how many miles would the radiator be empty?

$ F.\:\: 13.7 \\[3ex] G.\:\: 17.5 \\[3ex] H.\:\: 35.0 \\[3ex] J.\:\: 70.0 \\[3ex] K.\:\: 120.0 \\[3ex] $

Per minute means $1$ minute
Per hour means $1$ hour

Second Method: Proportional Reasoning Method

The radiator is leaking fluid at $4$ ounces per minute
First: We need to find how many minutes it will take for $480$ ounces to leak

The truck is traveling at $35$ miles per hour

Second: We need to convert the minutes in the First step to hours

Third:Then, we find how many miles the truck will travel for those number of hours

Let $c$ = number of minutes it will take for $480$ ounces to leak
Let $d$ = number of miles the truck will travel before the radiator is empty

ounces minute
$40$ $1$
$480$ $c$

$ \dfrac{c}{1} = \dfrac{480}{4} \\[5ex] c = 120\:minutes \\[3ex] 60\:minutes = 1\:hour \\[3ex] 120\:minutes = 2\:hours \\[3ex] \rightarrow c = 2\:hours \\[3ex] $
miles hour
$35$ $1$
$d$ $2$

$ \dfrac{d}{2} = \dfrac{35}{1} \\[5ex] Cross\:\:Multiply \\[3ex] d * 1 = 35 * 2 \\[3ex] d = 70\:miles \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 480\:ounces * \dfrac{.....minutes}{.....ounces} * \dfrac{.....hour}{.....minutes} * \dfrac{.....miles}{.....hour} \\[5ex] 480\:ounces * \dfrac{1\:minute}{4\:ounces} * \dfrac{1\:hour}{60\:minutes} * \dfrac{35\:miles}{1\:hour} \\[5ex] = \dfrac{480 * 1 * 1 * 35}{4 * 60} \\[5ex] = 2 * 35 \\[3ex] = 70\:miles \\[3ex] $ The truck will drive for $70$ miles before the radiator fluid is empty.
(26.) CSEC (i) At Bank A, US$1.00 = BD$1.96
Calculate the value of US$700 in BD$

(ii) At Bank B, the value of US$700 is BD$1386
Calculate the value of US$1.00 in BD$ at this bank.


Measurement is Money/Currency

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] (i)\:\:Bank\:\:A \\[3ex] US\$700 \:\:to\:\: BD\$ \\[3ex] = US\$700 * \dfrac{1.96\:BD\$}{1.00\:US\$} \\[5ex] US\$700 = BD\$1372 \\[3ex] (ii)\:\:Bank\:\:B \\[3ex] US\$1.00\:\:to\:\:BD\$ \\[3ex] = US\$1.00 * \dfrac{1386\:BD\$}{700\:US\$} \\[5ex] US\$1.00 = BD\$1.98 \\[3ex] $
Second Method: Proportional Reasoning Method
$US\$$ $BD\$$
$1.00$ $1.96$
$700$ $x$

$ \dfrac{1.00}{700} = \dfrac{1.96}{x} \\[5ex] Cross\:\:Multiply \\[3ex] 1.00(x) = 700(1.96) \\[3ex] x = BD\$1372 \\[3ex] $
$US\$$ $BD\$$
$700$ $1386$
$1$ $y$

$ \dfrac{700}{1} = \dfrac{1386}{y} \\[5ex] Cross\:\:Multiply \\[3ex] 700(y) = 1(1386) \\[3ex] 700y = 1386 \\[3ex] y = \dfrac{1386}{700} \\[5ex] y = BD\$1.98 $
(27.) ACT Traveling at approximately $186,000$ miles per second, about how many miles does a beam of light travel in $2$ hours?

$ F.\:\: 3.72 * 10^5 \\[3ex] G.\:\: 2.23 * 10^6 \\[3ex] H.\:\: 2.68 * 10^7 \\[3ex] J.\:\: 6.70 * 10^8 \\[3ex] K.\:\: 1.34 * 10^9 \\[3ex] $

Per second means $1$ second

Second Method: Proportional Reasoning Method

Let $p$ = number of miles the beam travels in $2$ hours

$ 60\:seconds = 1\:minute \\[3ex] 60\:minutes = 1\:hour \\[3ex] \rightarrow (60 * 60)\:seconds = 1\:hour \\[3ex] 3600\:seconds = 1\:hour \\[3ex] \rightarrow 2 * 3600\:seconds = 2 * 1\:hour \\[3ex] \therefore 7200\:seconds = 2\:hours \\[3ex] 2\:hours = 7200\:seconds \\[3ex] $
miles seconds
$186000$ $1$
$p$ $7200$

$ \dfrac{p}{186000} = \dfrac{7200}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:18600 \\[3ex] 18600 * \dfrac{p}{186000} = 18600 * \dfrac{7200}{1} \\[5ex] p = 186000(7200) \\[3ex] p = 1339200000\:miles \\[3ex] p = 1.3392 * 10^9\:miles \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 186000\:\dfrac{miles}{seconds} * \dfrac{.....seconds}{.....hours} * 2\:hours \\[5ex] \dfrac{186000\:miles}{1\:second} * \dfrac{3600\:seconds}{1\:hour} * 2\:hours \\[5ex] = \dfrac{186000 * 3600 * 2}{1 * 1} \\[5ex] = 186000 * 3600 * 2 \\[5ex] = 1339200000\:miles \\[3ex] = 1.3392 * 10^9\:miles $
(28.) ACT Kaya drove $200$ miles in $5$ hours of actual driving time.
By driving an average of $10$ miles per hour faster, Kaya could have saved how many hours of actual driving time?

$ A.\:\: \dfrac{1}{6} \\[5ex] B.\:\: \dfrac{2}{3} \\[5ex] C.\:\: \dfrac{7}{10} \\[5ex] D.\:\: 1 \\[3ex] E.\:\: 4 \\[3ex] $

Driving $200$ miles in $5$ hours means how many miles per hour?

$ 200\:miles\:\:in\:\:5\:hours\:\:means \\[3ex] \dfrac{200\:miles}{5\:hours} \\[5ex] = 40\:miles\:per\:hour \\[3ex] OR \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:the\:\:number\:\:of\:\:miles\:\:in\:\:1\:hour \\[3ex] $
miles hours
$200$ $5$
$p$ $1$

$ \dfrac{p}{1} = \dfrac{200}{5} \\[5ex] p = 40\:miles \\[3ex] This\:\:means\:\:40\:\:miles\:\:in\:\:1\:hour \\[3ex] $ But if Kaya was driving at an average of $10\:mph$ faster

This means that she was driving at $40 + 10 = 50\:mph$ faster

So, how many hours will she need to drive $200\:miles$ if she was driving at $50$ miles per hour?

$ Speed = \dfrac{Distance}{Time} \\[5ex] Time = \dfrac{Distance}{Speed} \\[5ex] = \dfrac{200\:miles}{50\:mph} \\[5ex] = 4\:hours \\[3ex] Actual\:\:Driving\:\:Time\:\:@\:\:40mph = 5\:hours \\[3ex] Supposed\:\:Driving\:\:Time\:\:@\:\:50mph = 4\:hours \\[3ex] Savings\:\:in\:\:time = 5\:hours - 4\:hours = 1\:hour $
(29.) A liquid substance has a density of $10$ pounds per gallon.
Convert this into grams per cubic centimeter using only the information:

$ 1\:gal \approx 231\:inch^3 \\[3ex] 1\:lb \approx 453.6\:g \\[3ex] 1\:inch = 2.54\:cm \\[3ex] $ Round your answer to the nearest hundredth as needed.


Per gallon means $1$ gallon
Per cubic centimeter means $1$ cubic centimeter
We are restricted to using only that information.
As you can see, we do not have any direct conversion from $gal$ to $cm^3$
So, we need to establish that conversion.
How?
We have the conversion from $inch$ to $cm$
We have the conversion from $gal$ to $inch^3$
We have to figure a way to do it. ☺

$ 1\:inch = 2.54\:cm \\[3ex] Cube\:\:both\:\:sides \\[3ex] (1\:inch)^3 = (2.54\:cm)^3 \\[3ex] 1^3\:inch^3 = 2.54^3\:cm^3 \\[3ex] 1\:inch^3 = 16.387064\:cm^3 \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 10\:lb/gal\:\:to\:\:g/cm^3 \\[3ex] \dfrac{10\:lb}{1\:gal} * \dfrac{.....g}{.....lb} * \dfrac{.....gal}{.....inch^3} * \dfrac{.....inch^3}{.....cm^3} \\[5ex] \dfrac{10\:lb}{1\:gal} * \dfrac{453.6\:g}{1\:lb} * \dfrac{1\:gal}{231\:inch^3} * \dfrac{1\:inch^3}{16.387064\:cm^3} \\[5ex] = \dfrac{10 * 453.6}{231 * 16.387064} \\[5ex] = \dfrac{4536}{3785.41178} \\[5ex] = 1.19828443\:g/cm^3 \\[3ex] \approx 1.20\:g/cm^3 \\[3ex] $
$ \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:g\:\:for\:\:10\:lb \\[3ex] $
Numerator
$lb$ $g$
$1$ $453.6$
$10$ $x$

$ \dfrac{x}{10} = \dfrac{453.6}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:10 \\[3ex] 10 * \dfrac{x}{10} = 10 * \dfrac{453.6}{1} \\[5ex] x = 10(453.6) \\[3ex] x = 4536\:g \\[3ex] \underline{Third\:\:Method:\:\:Fast\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:cm^3\:\:for\:\:1\:gal(231\:inch^3) \\[3ex] $
Denominator
$inch^3$ $gal$ $cm^3$
$1$ $16.387064$
$231$ $1$ $y$

$ \dfrac{y}{16.387064} = \dfrac{231}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:16.387064 \\[3ex] 16 * \dfrac{y}{16.387064} = 16 * \dfrac{231}{1} \\[5ex] y = 16(231) \\[3ex] y = 3696\:cm^3 \\[3ex] \underline{Entire\:\:Question} \\[3ex] 10\:lb/gal \\[3ex] = \dfrac{x}{y} \\[5ex] = \dfrac{4536}{3696} \\[5ex] = 1.22727273\:g/cm^3...oops... \\[3ex] $ Teacher: There is a problem here...
It is not the same exact value that we got using the Unity Fraction Method.
*Student: Why is that?...speaking like an American lol
*Teacher: Can you figure out why?...asking questions with questions...typical of a Nigerian lol
Student: Well, I think it is because we are working with rounded values (approximate values) rather than exact values.
Teacher: That is correct.
So, what do we do to get the same answer as the First Method?
Student: Work with exact values. Do not work with approximate values.
Teacher: Okay.
But...specifically to this question, what should we use?
Student: I think we should convert $1\:inch^3$ to gallons first...
Then, we use the $gal$ to $cm^3$ measurement and find $y$
Teacher: That is correct!


$ Re-do \\[3ex] \underline{Third\:\:Method:\:\:Fast\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:c\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:gal\:\:for\:\:1\:inch^3 \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:cm^3\:\:for\:\:1\:gal(231\:inch^3) \\[3ex] $
Denominator
$inch^3$ $gal$ $cm^3$
$1$ $c$ $16.387064$
$231$ $1$ $y$

$ \dfrac{c}{1} = \dfrac{1}{231} \\[5ex] c = \dfrac{1}{231}\:gal \\[5ex] Next \\[3ex] \dfrac{y}{1} = \dfrac{16.387064}{c} \\[5ex] y = 16.387064 \div c \\[3ex] y = 16.387064 \div \dfrac{1}{231} \\[5ex] y = 16.387064 * \dfrac{231}{1} \\[5ex] y = 3785.41178\:cm^3 \\[3ex] \underline{Entire\:\:Question} \\[3ex] 10\:lb/gal \\[3ex] = \dfrac{x}{y} \\[5ex] = \dfrac{4536}{3785.41178} \\[5ex] = 1.19828443\:g/cm^3 \\[3ex] \approx 1.20\:g/cm^3 $
(30.) ACT A recipe for $150$ servings requires $4.5$ liters of sauce.
About how many liters of sauce are required for $80$ servings?

$ A.\:\: 2.1 \\[3ex] B.\:\: 2.4 \\[3ex] C.\:\: 3.0 \\[3ex] D.\:\: 8.4 \\[3ex] E.\:\: 15.5 \\[3ex] $

Second Method: Proportional Reasoning Method

Let $c$ the number of liters of sauce required for $80$ servings

servings liters
$150$ $4.5$
$80$ $c$

$ \dfrac{c}{4.5} = \dfrac{80}{150} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\: 4.5 \\[3ex] 4.5 * \dfrac{c}{4.5} = 4.5 * \dfrac{80}{150} \\[5ex] c = \dfrac{4.5 * 80}{150} \\[5ex] c = \dfrac{360}{150} \\[5ex] c = 2.4\:liters \\[3ex] $ $2.4$ liters of sauce is required for $80$ servings
(31.) Convert 1245 feet per hour to centimeter per second


Per hour means $1$ hour
Per second means $1$ second

$ 60\:seconds = 1\:minute \\[3ex] 60\:minutes = 1\:hour \\[3ex] \rightarrow (60 * 60)\:seconds = 1\:hour \\[3ex] 3600\:seconds = 1\:hour \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 1245\:ft/hr\:\:to\:\:cm/s \\[3ex] 1245\dfrac{ft}{hr} * \dfrac{.....m}{.....ft} * \dfrac{.....cm}{.....m} * \dfrac{.....hr}{.....s} \\[5ex] 1245\dfrac{ft}{hr} * \dfrac{0.3048\:m}{1\:ft} * \dfrac{1\:cm}{10^{-2}\:m} * \dfrac{1\:hr}{3600\:s} \\[5ex] = 1245\dfrac{ft}{hr} * \dfrac{0.3048\:m}{1\:ft} * \dfrac{1\:cm}{0.01\:m} * \dfrac{1\:hr}{3600\:s} \\[5ex] = \dfrac{1245 * 0.3048}{0.01 * 3600} \\[5ex] = \dfrac{379.476}{36} \\[5ex] = 10.541\:cm/s \\[3ex] \underline{Third\:\:Method:\:\:Fast\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] 1\:cm = 10^{-2}\:m \\[3ex] 1\:cm = 0.01\:m \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:cm\:\:for\:\:0.3048\:m \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:cm\:\:for\:\:1245\:ft \\[3ex] $
Numerator
$ft$ $m$ $cm$
$0.01$ $1$
$1$ $0.3048$ $x$
$1245$ $y$

$ \dfrac{x}{1} = \dfrac{0.3048}{0.01} \\[5ex] x = 30.48\:cm \\[3ex] Next: \\[3ex] \dfrac{y}{x} = \dfrac{1245}{1} \\[5ex] \dfrac{y}{30.48} = 1245 \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:30.48 \\[3ex] 30.48 * \dfrac{y}{30.48} = 30.48(1245) \\[5ex] y = 37947.6\:cm \\[3ex] \underline{Denominator} \\[3ex] 1\:hr = 3600\:s \\[3ex] \underline{Entire\:\:Question} \\[3ex] \implies \dfrac{1245\:ft}{1\:hr} \\[5ex] = \dfrac{37947.6\:cm}{3600\:s} \\[5ex] = 10.541\:cm/s $
(32.) Convert 1245 feet per hour to inch per minute


Per hour means $1$ hour
Per minute means $1$ minute

$ 60\:minutes = 1\:hour \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 1245\:ft/hr\:\:to\:\:inch/min \\[3ex] 1245\dfrac{ft}{hr} * \dfrac{.....inch}{.....ft} * \dfrac{.....hr}{.....min} \\[5ex] 1245\dfrac{ft}{hr} * \dfrac{12\:inch}{1\:ft} * \dfrac{1\:hr}{60\:min} \\[5ex] = \dfrac{1245 * 12}{60} \\[5ex] = \dfrac{1245}{5} \\[5ex] = 249\:inches/min \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:inch\:\:for\:\:1245\:ft \\[3ex] $
Numerator
$ft$ $inch$
$1$ $12$
$1245$ $p$

$ \dfrac{p}{12} = \dfrac{1245}{1} \\[5ex] Cross\:\:Multiply \\[3ex] p(1) = 12(1245) \\[3ex] p = 14940\:inches \\[3ex] \underline{Denominator} \\[3ex] 1\:hr = 60\:min \\[3ex] \underline{Entire\:\:Question} \\[3ex] \implies \dfrac{1245\:ft}{1\:hr} \\[5ex] = \dfrac{14940\:inch}{60\:min} \\[5ex] = 249\:inches/min $
(33.) ACT A certain race car has a maximum speed of 240 miles per hour.
Which of the following is an expression for this maximum speed in feet per second?
(Note: 1 mile = 5,280 feet)

$ A.\:\: \dfrac{240(5,280)}{36,000} \\[5ex] B.\:\: \dfrac{240(3,600)}{5,280} \\[5ex] C.\:\: \dfrac{240(5,280)}{3,600} \\[5ex] D.\:\: \dfrac{60(5,280)}{240} \\[5ex] E.\:\: \dfrac{240(5,280)}{360} \\[5ex] $

Per hour means $1$ hour
Per second means $1$ second

$ 60\:seconds = 1\:minute \\[3ex] 60\:minutes = 1\:hour \\[3ex] \rightarrow (60 * 60)\:seconds = 1\:hour \\[3ex] 3600\:seconds = 1\:hour \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 240\:miles/hr\:\:to\:\:ft/s \\[3ex] 240\dfrac{miles}{hr} * \dfrac{.....ft}{.....miles} * \dfrac{.....hr}{.....s} \\[5ex] 240\dfrac{miles}{hr} * \dfrac{5280\:ft}{1\:mile} * \dfrac{1\:hr}{3600\:s} \\[5ex] = \dfrac{240 * 5280}{3600}...Option\:C \\[5ex] = \dfrac{1267200}{3600} \\[5ex] = 352\:ft/s \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:feet \\[3ex] $
Numerator
$miles$ $ft$
$1$ $5280$
$240$ $p$

$ \dfrac{p}{240} = \dfrac{5280}{1} \\[5ex] Cross\:\:Multiply \\[3ex] p(1) = 240(5280) \\[3ex] p = \dfrac{5280}{240}\:ft \\[5ex] \underline{Denominator} \\[3ex] 1\:hr = 3600\:s \\[3ex] \underline{Entire\:\:Question} \\[3ex] \implies \dfrac{240\:miles}{1\:hr} \\[5ex] = \dfrac{240(5280)\:ft}{3600\:s} \\[5ex] = 352\:ft/s $
(34.) ACT On a map, $\dfrac{1}{2}$ inch represents 10 actual miles.

Two towns that are $4\dfrac{1}{2}$ inches apart on this map are how many actual miles apart?

$ A.\:\: 10 \\[3ex] B.\:\: 20 \\[3ex] C.\:\: 22\dfrac{1}{2} \\[5ex] D.\:\: 45 \\[3ex] E.\:\: 90 \\[3ex] $

First Method: Unity Fraction Method

$ 4\dfrac{1}{2}\;inches * \dfrac{......miles}{.........inches} \\[5ex] - \dfrac{9}{2}\;inches * \dfrac{10\;miles}{\dfrac{1}{2}\;inches} \\[7ex] = \dfrac{9}{2} * 10 \div \dfrac{1}{2} \\[5ex] = \dfrac{9}{2} * \dfrac{10}{1} * \dfrac{2}{1} \\[5ex] = 90\;miles \\[3ex] $ Second Method: Proportional Reasoning Method
Let $p$ be the number of actual miles that is represented by $4\dfrac{1}{2}$ inches

inch miles
$\dfrac{1}{2}$ $10$
$4\dfrac{1}{2} = \dfrac{9}{2}$ $p$

$ 4\dfrac{1}{2} = \dfrac{2 * 4 + 1}{2} = \dfrac{8 + 1}{2} = \dfrac{9}{2} \\[5ex] \dfrac{p}{10} = \dfrac{\dfrac{9}{2}}{\dfrac{1}{2}} \\[7ex] Multiply\:\:both\:\:sides\:\:by\:\: 10 \\[3ex] 10 * \dfrac{p}{10} = 10 * \dfrac{\dfrac{9}{2}}{\dfrac{1}{2}} \\[7ex] p = \dfrac{\dfrac{10 * 9}{2}}{\dfrac{1}{2}} \\[7ex] p = \dfrac{5 * 9}{\dfrac{1}{2}} \\[7ex] p = \dfrac{45}{\dfrac{1}{2}} \\[7ex] p = 45 \div \dfrac{1}{2} \\[5ex] p = 45 * \dfrac{2}{1} \\[5ex] p = 45 * 2 \\[3ex] p = 90\:miles \\[3ex] $ $4\dfrac{1}{2}$ inches represents $90$ miles
(35.) Convert $0.00005$ kilometer per minute squared to centimeter per hour squared


Per hour means $1$ hour
Per hour squared means $1^2\:hr^2 = 1\:hr^2$
Per minute means $1$ minute
Per minute squared means $1^2\:min^2 = 1\:min^2$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 0.00005\:km/min^2\:\:to\:\:cm/hr^2 \\[3ex] \dfrac{0.00005\:km}{min * min} * \dfrac{.....min}{.....hr} * \dfrac{.....min}{.....hr} * \dfrac{.....m}{.....km} * \dfrac{.....cm}{.....m} \\[5ex] \dfrac{0.00005\:km}{min * min} * \dfrac{60\:min}{1\:hr} * \dfrac{60\:min}{1\:hr} * \dfrac{10^3\:m}{1\:km} * \dfrac{1\:cm}{10^{-2}\:m} \\[5ex] = \dfrac{0.00005\:km}{min * min} * \dfrac{60\:min}{1\:hr} * \dfrac{60\:min}{1\:hr} * \dfrac{1000\:m}{1\:km} * \dfrac{1\:cm}{0.01\:m} \\[5ex] = \dfrac{0.00005 * 60 * 60 * 1000}{0.01} \\[5ex] = \dfrac{180}{0.01} \\[5ex] = 18000\:cm/hr^2 \\[3ex] $
$ \underline{Third\:\:Method:\:\:Fast\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:cm\:\:for\:\:0.00005\:km \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:km\:\:for\:\:1\:cm \\[3ex] 10^{-2} = \dfrac{1}{10^2} = \dfrac{1}{100} = 0.01 \\[5ex] 10^3 = 1000 \\[3ex] $
Numerator
$km$ $m$ $cm$
$y$ $0.01$ $1$
$1$ $1000$
$0.00005$ $x$

$ \dfrac{y}{1} = \dfrac{0.01}{1000} \\[5ex] y = 0.00001 \\[3ex] Next \\[3ex] \dfrac{x}{1} = \dfrac{0.00005}{y} \\[5ex] x = \dfrac{0.00005}{0.00001} \\[5ex] x = 5\:cm \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr^2\:\:for\:\:1\:min^2 \\[3ex] 60\:minutes = 1\:hr \\[3ex] Square\:\:both\:\:sides \\[3ex] (60\:minutes)^2 = (1\:hr)^2 \\[3ex] 60^2\:minute^2 = 1^2\:hr^2 \\[3ex] 3600\:minute^2 = 1\:hr^2 \\[3ex] $
Denominator
$min^2$ $hr^2$
$3600$ $1$
$1$ $p$

$ \dfrac{p}{1} = \dfrac{1}{3600} \\[5ex] p = \dfrac{1}{3600}\:hr^2 \\[5ex] \underline{Entire\:\:Question} \\[3ex] 0.00005\:km/min^2 \\[3ex] = \dfrac{x}{p} \\[5ex] = x \div p \\[3ex] = 5 \div \dfrac{1}{3600} \\[5ex] = 5 * 3600 \\[3ex] = 18000\:cm/hr^2 $
(36.) Convert 3450 Newtons per square centimeter to pounds per square inch.
Use the conversion:$1\:inch = 2.54\:cm$ and $1\:lb = 4.448\:N$
Round your answer to the nearest hundredth as needed.


Per cm means $1$ cm
Per square cm means $1^2\:cm^2 = 1\:cm^2$
Per inch means $1$ inch
Per square inch means $1^2\:inch^2 = 1\:inch^2$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 3450\:N/cm^2\:\:to\:\:lb/inch^2 \\[3ex] \dfrac{3450\:N}{cm * cm} * \dfrac{.....cm}{.....inch} * \dfrac{.....cm}{.....inch} * \dfrac{.....lb}{.....N} \\[5ex] \dfrac{3450\:N}{cm * cm} * \dfrac{2.54\:cm}{1\:inch} * \dfrac{2.54\:cm}{1\:inch} * \dfrac{1\:lb}{4.448\:N} \\[5ex] = \dfrac{3450 * 2.54 * 2.54}{4.448} \\[5ex] = \dfrac{22258.02}{4.448} \\[5ex] = 5004.05126 \\[3ex] \approx 5004.05\:lb/inch^2 \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:lb\:\:for\:\:3450\:N \\[3ex] $
Numerator
$N$ $lb$
$4.448$ $1$
$3450$ $p$

$ \dfrac{p}{1} = \dfrac{3450}{4.448} \\[5ex] p = 775.629496\:lb \\[3ex] 1\:inch = 2.54\:cm \\[3ex] Square\:\:both\:\:sides \\[3ex] (1\:inch)^2 = (2.54\:cm)^2 \\[3ex] 1^2\:inch^2 = 2.54^2\:cm^2 \\[3ex] 1\:inch^2 = 6.4516\:cm^2 \\[3ex] $
Denominator
$cm^2$ $inch^2$
$6.4516$ $1$
$1$ $c$

$ \dfrac{c}{1} = \dfrac{1}{6.4516} \\[5ex] c = 0.15500031\:inch^2 \\[3ex] \underline{Entire\:\:Question} \\[3ex] 3450\:N/cm^2 \\[3ex] = \dfrac{p}{c} \\[5ex] = \dfrac{775.629496}{0.15500031} \\[5ex] = 5004.05126 \\[3ex] \approx 5004.05\:lb/inch^2 $
(37.) Convert $84520$ grams per cubic meter to pounds per cubic feet.


Per meter means $1$ meter
Per cubic meter means $1^3\:m^3 = 1\:m^3$
Per foot means $1$ foot
Per cubic feet means $1^3\:ft^3 = 1\:ft^3$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 84520\:g/m^3\:\:to\:\:lb/ft^3 \\[3ex] \dfrac{84520\:g}{m * m * m} * \dfrac{.....m}{.....ft} * \dfrac{.....m}{.....ft} * \dfrac{.....m}{.....ft} * \dfrac{.....lb}{.....g} \\[5ex] \dfrac{84520\:g}{m * m * m} * \dfrac{0.3048\:m}{1\:ft} * \dfrac{0.3048\:m}{1\:ft} * \dfrac{0.3048\:m}{1\:ft} * \dfrac{1\:lb}{453.59237\:g} \\[5ex] = \dfrac{84520 * 0.3048 * 0.3048 * 0.3048}{453.59237} \\[5ex] = \dfrac{2393.33987}{453.59237} \\[5ex] = 5.27641122\:lb/ft^3 \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:lb\:\:for\:\:84520\:g \\[3ex] $
Numerator
$g$ $lb$
$453.59237$ $1$
$84520$ $p$

$ \dfrac{p}{1} = \dfrac{84520}{453.59237} \\[5ex] p = 186.334704\:lb \\[3ex] \underline{Denominator} \\[3ex] 1\:ft = 0.3048\:m \\[3ex] Cube\:\:both\:\:sides \\[3ex] (1\:ft)^3 = (0.3048\:m)^3 \\[3ex] 1^3\:ft^3 = 0.3048^3\:m^3 \\[3ex] 1\:ft^3 = 0.0283168466\:m^3 \\[3ex] $
Denominator
$m^3$ $ft^3$
$0.0283168466$ $1$
$1$ $c$

$ \dfrac{c}{1} = \dfrac{1}{0.0283168466} \\[5ex] c = 35.3146667\:ft^3 \\[3ex] \underline{Entire\:\:Question} \\[3ex] 84520\:g/m^3 \\[3ex] = \dfrac{p}{c} \\[5ex] = \dfrac{186.334704}{35.3146667} \\[5ex] = 5.27641123\:lb/ft^3 $
(38.) Convert $12450$ feet per hour squared to inch per minute squared


Per hour means $1$ hour
Per hour squared means $1^2\:hr^2 = 1\:hr^2$
Per minute means $1$ minute
Per minute squared means $1^2\:min^2 = 1\:min^2$

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 12450\:ft/hr^2\:\:to\:\:inch/min^2 \\[3ex] \dfrac{12450\:ft}{hr * hr} * \dfrac{.....hr}{.....min} * \dfrac{.....hr}{.....min} * \dfrac{....inch}{.....ft} \\[5ex] = \dfrac{12450\:ft}{hr * hr} * \dfrac{1\:hr}{60\:min} * \dfrac{1\:hr}{60\:min} * \dfrac{12\:inch}{1\:ft} \\[5ex] = \dfrac{12450 * 12}{60 * 60} \\[5ex] = \dfrac{149400}{3600} \\[5ex] = 41.5\:inch/min^2 \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:inch\:\:for\:\:12450\:ft \\[3ex] $
Numerator
$feet$ $inch$
$1$ $12$
$12450$ $p$

$ \dfrac{p}{12} = \dfrac{12450}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\: 12 \\[3ex] 12 * \dfrac{p}{12} = 12 * \dfrac{12450}{1} \\[5ex] p = 12(12450) \\[3ex] p = 149400\:inch \\[3ex] \underline{Denominator} \\[3ex] 60\:minutes = 1\:hr \\[3ex] Square\:\:both\:\:sides \\[3ex] (60\:minutes)^2 = (1\:hr)^2 \\[3ex] 60^2\:minute^2 = 1^2\:hr^2 \\[3ex] 3600\:minute^2 = 1\:hr^2 \\[3ex] 1\:hr^2 = 3600\:minute^2 \\[3ex] \underline{Entire\:\:Question} \\[3ex] 12450\:ft/hr^2 \\[3ex] = \dfrac{Numerator}{Denominator} \\[5ex] = \dfrac{149400}{3600} \\[5ex] = 41.5\:inch/min^2 $


Use the following information to answer Questions 39 – 41

ACT Carl purchased a new car.
The fuel economy window sticker on the new car contained the information shown below.
In the figure, MPG is miles per gallon.

Numbers 39-41


(39.) ACT Carl is planning a trip in his new car that will include 350 miles of highway driving.
Using the average fuel cost per gallon given in the fuel economy window sticker, which of the following dollar amounts is closest to his total cost for fuel over the 350 miles of highway driving?

$ F.\:\: \$43.75 \\[3ex] G.\:\: \$51.85 \\[3ex] H.\:\: \$56.00 \\[3ex] J.\:\: \$63.64 \\[3ex] K.\:\: \$87.50 \\[3ex] $

Third Method: Fast Proportional Reasoning Method
Let $p$ be the total cost for fuel over the $350$ miles of highway driving

Highway
miles gallon cost($\$)
$32$ $1$ $4$
$350$ $p$

$ \dfrac{p}{4} = \dfrac{350}{32} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:4 \\[3ex] 4 * \dfrac{p}{4} = 4 * \dfrac{350}{32} \\[5ex] p = \dfrac{4 * 350}{32} \\[5ex] p = \dfrac{350}{8} \\[5ex] p = \$43.75 \\[3ex] $ The total cost for fuel over the $350$ miles of highway driving is $\$43.75$
(40.) ACT The cost estimates are based on a certain number of miles driven per year.
To the nearest 1,000 miles, what is this number?

$ A.\:\: 13,000 \\[3ex] B.\:\: 15,000 \\[3ex] C.\:\: 16,000 \\[3ex] D.\:\: 19,000 \\[3ex] E.\:\: 22,000 \\[3ex] $

Third Method: Fast Proportional Reasoning Method
Let $k$ be the certain number of miles driven per year on which the cost estimates are based

City/Highway
miles gallon cost($\$$)
$25$ $1$ $4$
$k$ $2400$

$ \dfrac{k}{25} = \dfrac{2400}{4} \\[5ex] \dfrac{k}{25} = 600 \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:25 \\[3ex] 25 * \dfrac{k}{25} = 25(600) \\[5ex] k = 15000\:miles $ The certain number of miles driven per year on which the cost estimates are based is $15,000\:miles$




Top




(41.) ACT Based on the annual fuel cost estimate for this car and the estimate for how much Carl will save in fuel costs over the next 5 years, what would be the expected annual fuel cost of an average new vehicle?

$ F.\:\: \$1,180 \\[3ex] G.\:\: \$2,950 \\[3ex] H.\:\: \$3,100 \\[3ex] J.\:\: \$3,500 \\[3ex] K.\:\: \$3,980 \\[3ex] $

$ \underline{Carl's\:\:New\:\:Car\:\:versus\:\:Average\:\:New\:\:Vehicle} \\[3ex] Savings\:\:in\:\:fuel\:\:costs\:\:over\:\:5\:\:years = \$3500 \\[3ex] Savings\:\:in\:\:fuel\:\:costs\:\:over\:\:1\:\:year = \dfrac{3500}{5} = \$700 \\[5ex] Annual\:\:fuel\:\:cost = \$2400 \\[3ex] \underline{Average\:\:New\:\:Vehicle} \\[3ex] Expected\:\:Annual\:\:Fuel\:\:Cost \\[3ex] = \$700 + \$2400 \\[3ex] = \$3100 \\[3ex] $ The expected annual fuel cost of an average new vehicle is thirty one hundred dollars (American way) OR three thousand, one hundred dollars (Nigerian way)
(42.) ACT At a refinery, 100,000 tons of sand are required to produce each 60,000 barrels of a tarry material.
How many tons of sand are required to produce $3,000$ barrels of this tarry material?

$ A.\:\: 5,000 \\[3ex] B.\:\: 18,000 \\[3ex] C.\:\: 20,000 \\[3ex] D.\:\: 40,000 \\[3ex] E.\:\: 50,000 \\[3ex] $

Second Method: Proportional Reasoning Method

Let $p$ the number of tons of sand required to produce $3000$ barrels

tons barrels
$100000$ $60000$
$p$ $3000$

$ \dfrac{p}{3000} = \dfrac{100000}{60000} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\: 3000 \\[3ex] 3000 * \dfrac{p}{3000} = 3000 * \dfrac{100000}{60000} \\[5ex] p = \dfrac{3000 * 100000}{60000} \\[5ex] p = 500 * 10 \\[3ex] p = 5000\:tons \\[3ex] $ $5,000$ tons of sand will be required to produce $3,000$ barrels of the tarry material
(43.) ACT A rectangular stage is 90 feet long and 30 feet wide.
What is the area, in square yards, of this stage?

$ A.\:\: 30\sqrt{3} \\[3ex] B.\:\: 300 \\[3ex] C.\:\: 675 \\[3ex] D.\:\: 900 \\[3ex] E.\:\: 2,700 \\[3ex] $

$ Area\:\;in\:\:square\:\:feet = 90\:feet * 30\:feet = 2700\:square\:feet \\[3ex] Convert\:\: 2700\:feet^2 \:\:to\:\: yard^2 \\[3ex] \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 2700\:ft^2\:\:to\:\:yd^2 \\[3ex] 2700\:ft * ft * \dfrac{.....yd}{.....ft} * \dfrac{.....yd}{.....ft} \\[5ex] 2700\:ft * ft * \dfrac{1\:yd}{3\:ft} * \dfrac{1\:yd}{3\:ft} \\[5ex] = \dfrac{2700 * 1 * 1}{3 * 3} \\[5ex] = \dfrac{2700}{9} \\[5ex] = 300\:yd^2 \\[3ex] $ Second Method: Proportional Reasoning Method
Let $c$ = converted unit from $ft^2$ to $yd^2$

$ 3\:ft = 1\:yd \\[3ex] Square\:\:both\:\:sides \\[3ex] (3\:ft)^2 = (1\:yd)^2 \\[3ex] 3^2 * ft^2 = 1^2 * yd^2 \\[3ex] 9\:ft^2 = 1\:yd^2 \\[3ex] $
$ft^2$ $yd^2$
$9$ $1$
$2700$ $c$

$ \dfrac{c}{1} = \dfrac{2700}{9} \\[5ex] c = 300\:yd^2 \\[3ex] \therefore 2700\:ft^2 = 300\:yd^2 $
(44.) ACT Janeece's average heart rate is 70 beats per minute.
At this rate, how many times, to the nearest thousand, does her heart beat in 7 days?

$ A.\:\: 12,000 \\[3ex] B.\:\: 29,000 \\[3ex] C.\:\: 353,000 \\[3ex] D.\:\: 706,000 \\[3ex] E.\:\: 42,336,000 \\[3ex] $

$70$ beats per minute implies $70$ beats in one minute

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] First:\:\:Convert\:\: 70\:\:beats\:\:per\:\:minute\:\:to\:\:beats\:\:per\:\:day \\[3ex] \dfrac{70\:beats}{1\:minute} * \dfrac{...minute}{...hour} * \dfrac{...hour}{...day} \\[5ex] \dfrac{70\:beats}{1\:minute} * \dfrac{60\:minutes}{1\:hour} * \dfrac{24\:hours}{1\:day} \\[5ex] = \dfrac{70 * 60 * 24}{1 * 1 * 1} \\[5ex] = 100800\:beats/day \\[3ex] Second:\:\: Calculate\:\:the\:\:number\:\:of\:\:beats\:\:in\:\:7\:\:days \\[3ex] $ Second Method: Proportional Reasoning Method

Let $c$ = number of beats in $7$ days

beats days
$100800$ $1$
$c$ $7$

$ \dfrac{c}{100800} = \dfrac{7}{1} \\[5ex] \dfrac{c}{100800} = 7 \\[5ex] 100800 * \dfrac{c}{100800} = 100800(7) \\[5ex] c = 705600\:beats \\[3ex] To\:\:the\:\:nearest\:\:thousand,\:\: c \approx 706,000\:beats \\[3ex] $ Student: Mr. C, could you not just multiply by $7$?
Much faster than setting it like a table.
This is what I mean.
In one day, she has $100800$ beats
So, in seven days, it will be $7 * 100800 = 705600$ beats
Teacher: You are correct.
I did it that way to accommodate everyone...including some people who may not understand it the way you did it.
(45.) For the following quantities:
(a.) State the units mathematically
(b.) State the units in words.

(I.) Your average speed on a long walk, found by dividing distance traveled in meters by time elapsed in hours.

(II.) The per-mile price of an airline ticket, found by dividing the price of the ticket in dollars by distance traveled in miles.

(III.) The flow rate of a faucet, found by dividing the volume of water that leaves the faucet in liters during a period of time measured in minutes.

(IV.) The number of bagels produced by a bakery, found by multiplying the production rate in begels per baker per hour by the number of hours and by the number of bakers.

(V.) The cost of a car trip, found by dividing the cost of gas in dollars per gallon by the gas mileage in miles per gallon and multiplying the result by the length of the trip in miles.


(I.)
(a.) $\dfrac{m}{hr}$
(b.) meters per hour.

(II.)
(a.) $\dfrac{\$}{mi}$
(b.) dollars per mile.

(III.)
(a.) $\dfrac{L}{min}$
(b.) liters per minute.

(IV.)
multiplying the production rate in begels per baker per hour by the number of hours and by the number of bakers.

$ (a.) \\[3ex] \dfrac{bagels}{\dfrac{baker}{hour}} * hours * bakers \\[7ex] \dfrac{bagels}{baker} \div hour * hours * bakers \\[5ex] \dfrac{bagels}{baker} \div \dfrac{hour}{1} * hours * bakers \\[5ex] \dfrac{bagels}{baker} * \dfrac{1}{hour} * hours * bakers \\[5ex] bagels \\[3ex] $ (b.) bagels.

(V.)
cost of gas divided by the gas mileage and and multiplying the result by the length of the trip
cost of the gas in: $ per gallon
gas mileage in: miles per gallon
length of the trip in: miles

$ (a.) \\[3ex] \dfrac{\$}{gallon} \div \dfrac{miles}{gallon} * miles \\[5ex] \dfrac{\$}{gallon} * \dfrac{gallon}{miles} * miles \\[5ex] \$ $
(b.) dollars.
(46.) Choose the best answer and explain the reasoning for the following.
The guidelines for prescribing a particular drug specify a dose of 300 mg per kilogram of body weight per day.
How should you find how much of the drug should be given to a 30-kg child every 8 hours?
Choose the correct answer below.

A. Multiply 300 mg/kg/day by 30 kg and multiply that result by 3, since multiplying will cancel the kg units and multiplying by 3 will cancel the day units.

B. Multiply 300 mg/kg/day by 30 kg and divide that result by 3, since multiplying will cancel the kg units and dividing by 3 since there are three 8 hour intervals in a day.

C. Divide 300 mg/kg/day by 30 kg and multiply that result by 3, since dividing by 30 kg will give how much of the drug is needed for someone that weight and multiplying by 3 since there are three 8 hour intervals in a day.


Let us solve the question.
Then, we can select the correct answer option.
per kilogram means 1 kg
per day means 1 day

First, let us deal with the conversion one at a time.

First Method: Unity Fraction Method

$ 30\;kg \;\;to\;\;how\;\;many\;\;mg\;\;per\;\;day \\[3ex] 30\;kg * \dfrac{.......mg}{.......kg} \;\;per\;\;day \\[5ex] = 30\;kg * \dfrac{300\;mg}{1\;kg} \;\;per\;\;day \\[5ex] = 9000\;mg \;\;per\;\;day \\[3ex] 9000\;\;mg\;\;per\;\;day \;\;to\;\;how\;\;mg\;\;per\;\;every\;\;8\;\;hours \\[3ex] 24\;hours = 1 \;day \\[3ex] 3\;\;every\;\;8\;\;hours = 1\;\;day \\[3ex] \implies \\[3ex] \dfrac{9000\;mg}{1\;day} * \dfrac{.......day}{3\;\;every\;\;8-hours} \\[5ex] = \dfrac{9000\;mg}{1\;day} * \dfrac{1\;day}{3\;\;every\;\;8-hours} \\[5ex] = 3000\;mg\;\;per\;\;every\;\;8\;\;hours \\[3ex] $ Based on the steps in our solution, the correct option is B.
(47.) Decide the better deal for these scenarios.
Give reasons for your answers.

(I.) You can fill a 15​-gallon tank of gas for ​$48.35 or buy gas for ​$3.10​/gallon

(II.) You can buy shampoo in a ​6-ounce bottle for ​$2.69 or in a ​15-ounce bottle for ​​$9.59.

(III.) Storage locker A rents for $\dfrac{\$30}{yd^2}$ per month.

Storage locker B rents for $\dfrac{\$1.36}{ft^2}$ per week.​

(Assume 1 month = 4 weeks)


(I.) 1st: 15​-gallon tank of gas for ​$48.35
2nd: ​$3.10​/gallon
Let us determine the cost per gallon (cost for 1 gallon of gas)

$ \underline{cost\;\;per\;\;gallon} \\[3ex] \underline{1st:} \\[3ex] 1\;gallon * \dfrac{\$48.35}{15\;gallon} \\[5ex] = \$3.223333333 \\[3ex] \approx \$3.22 \\[3ex] \underline{2nd:} \\[3ex] \$3.10 \\[3ex] \$3.22 \gt \$3.10 \\[3ex] $ The better deal is to buy the gas for ​$3.10​/gallon because the price to fill a 15​-gallon tank of gas for ​$48.35 is ​$3.122 per gallon

(II.) 1st: ​6-ounce bottle for ​$2.69
2nd: ​15-ounce bottle for ​​$9.59
Let us determine the cost per ounce

$ \underline{cost\;\;per\;\;ounce} \\[3ex] \underline{1st:} \\[3ex] 1\;ounce * \dfrac{\$2.69}{6\;ounce} \\[5ex] = \$0.4483333333 \\[3ex] \approx \$0.45 \\[3ex] \underline{2nd:} \\[3ex] 1\;ounce * \dfrac{\$9.59}{15\;ounce} \\[5ex] = \$0.6393333333 \\[3ex] \approx \$0.64 \\[3ex] $ The 6​-ounce bottle is the better deal because the cost per ounce is $0.45 per ounce while the 15​-ounce bottle is ​$0.64 per ounce

(III.) We have at least two options to solve this question.
We can:
(1.) Convert the rent for Storage Locker A to dollars per square feet per week
or
(2.) Convert the rent for Storage Locker B to dollars per square yard per month.
Let us do both approaches. However, use any approach you profer.

$ \underline{Option\;1} \\[3ex] \dfrac{\$30}{yd * yd} * \dfrac{1}{.......month} * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} * \dfrac{.......month}{.......weeks} \\[5ex] \dfrac{\$30}{yd * yd} * \dfrac{1}{1\;month} * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;month}{4\;weeks} \\[5ex] = \$0.833333333 \\[3ex] \approx \$0.83 \\[3ex] $ Rent for Storage Locker A = $\dfrac{\$0.83}{ft^2}$ per week.

Rent for Storage Locker B = $\dfrac{\$1.36}{ft^2}$ per week.

Storage Locker A is the better deal.

$ \underline{Option\;2} \\[3ex] \dfrac{\$1.36}{ft * ft} * \dfrac{1}{.......week} * \dfrac{.......ft}{.......yd} * \dfrac{.......ft}{.......yd} * \dfrac{.......week}{.......month} \\[5ex] \dfrac{\$1.36}{ft * ft} * \dfrac{1}{1\;week} * \dfrac{3\;ft}{1\;yd} * \dfrac{3\;ft}{1\;yd} * \dfrac{4\;weeks}{1\;month} \\[5ex] = \$48.96 \\[3ex] $ Rent for Storage Locker A = $\dfrac{\$30}{yd^2}$ per month.

Rent for Storage Locker B = $\dfrac{\$48.96}{yd^2}$ per month.

Storage Locker A is the better deal.
(48.)


(49.) Convert 7500 millimeter per second to kilometer per hour


$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 7500\:mm/s\:\:to\:\:km/hr \\[3ex] 7500\dfrac{mm}{s} * \dfrac{.....m}{.....mm} * \dfrac{.....km}{.....m} * \dfrac{.....s}{.....min} * \dfrac{.....min}{.....hr} \\[5ex] 7500\dfrac{mm}{s} * \dfrac{10^{-3}\:m}{1\:mm} * \dfrac{1\:km}{10^3\:m} * \dfrac{60\:s}{1\:min} * \dfrac{60\:min}{1\:hr} \\[5ex] 7500\dfrac{mm}{s} * \dfrac{0.001\:m}{1\:mm} * \dfrac{1\:km}{1000\:m} * \dfrac{60\:s}{1\:min} * \dfrac{60\:min}{1\:hr} \\[5ex] = \dfrac{7500 * 0.001 * 60 * 60}{1000 * 1 * 1} \\[5ex] = \dfrac{27000}{1000} \\[5ex] = 27\:km/hr \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Per\:\:second\:\:means\:\:1\:\:second \\[3ex] Per\:\:hour\:\:means\:\:1\:\:hour \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:km\:\:for\:\:1\:mm \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:km\:\:for\:\:7500\:mm \\[3ex] Let\:\:k\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:60\:s \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:1\:s \\[3ex] \dfrac{7500\:mm}{1\:s} = \dfrac{x\:km}{y\:hr} \\[5ex] $
Numerator
$mm$ $m$ $km$
$1$ $10^{-3} = 0.001$ $p$
$10^3 = 1000$ $1$
$7500$ $x$

$ \dfrac{0.001}{1000} = \dfrac{p}{1} \\[5ex] 0.000001 = p \\[3ex] p = 0.000001\:km \\[3ex] Next: \\[3ex] \dfrac{1}{7500} = {p}{y} \\[5ex] Cross\:\:Multiply \\[3ex] x(1) = 7500(p) \\[3ex] x = 7500(0.000001) \\[3ex] x = 0.0075\:km \\[3ex] $
Denominator
$s$ $min$ $hr$
$60$ $1$ $k$
$60$ $1$
$1$ $y$

$ \dfrac{1}{60} = \dfrac{k}{1} \\[5ex] \dfrac{1}{60} = k \\[5ex] k = \dfrac{1}{60} \\[5ex] Next: \\[3ex] \dfrac{60}{1} = \dfrac{k}{y} \\[5ex] Cross\:\:Multiply \\[3ex] 60y = k(1) \\[3ex] 60y = k \\[3ex] y = \dfrac{k}{60} \\[5ex] y = k \div 60 \\[3ex] y = \dfrac{1}{60} \div \dfrac{60}{1} \\[5ex] y = \dfrac{1}{60} * \dfrac{1}{60} \\[5ex] y = \dfrac{1 * 1}{60 * 60} \\[5ex] y = \dfrac{1}{3600} \\[5ex] \implies 1\:s = \dfrac{1}{3600}\:hr \\[5ex] \dfrac{x\:km}{y\:hr} = x \div y \\[5ex] = 0.0075 \div \dfrac{1}{3600} \\[5ex] = 0.0075 * \dfrac{3600}{1} \\[5ex] = 0.0075(3600) \\[3ex] = 27\:km/hr \\[3ex] \therefore 7500\:mm/s = 27\:km/hr $
(50.) Using​ examples, show how to convert among the​ Fahrenheit, Celsius, and Kelvin temperature scales


Conversion between​ Celsius, Fahrenheit, and Kelvin can be done using conversion formulas.​
To convert 60°F to Celsius and Kelvin use the formulas $C = \dfrac{F - 32}{1.8}$ to convert to Celsius and then use $K = C + 273.15$ to convert to Kelvin to get $60^\circ F = 15.56^\circ C = 288.71K$.
(51.) Convert 48.9mm² into square centimeters.


$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 48.9\:mm^2\:\:to\:\:cm^2 \\[3ex] 48.9\:mm * mm * \dfrac{.....m}{.....mm} * \dfrac{.....m}{.....mm} * \dfrac{.....cm}{.....m} * \dfrac{.....cm}{.....m} \\[5ex] 48.9\:mm * mm * \dfrac{10^{-3}\:m}{1\:mm} * \dfrac{10^{-3}\:m}{1\:mm} * \dfrac{1\:cm}{10^{-2}\:m} * \dfrac{1\:cm}{10^{-2}\:m} \\[7ex] = \dfrac{48.9 * 10^{-3 + -3} * 1 * 1}{1 * 1 * 10^{-2 + -2}} \\[7ex] = \dfrac{48.9 * 10^{-3 - 3}}{10^{-2 - 2}} \\[7ex] = \dfrac{48.9 * 10^{-6}}{10^{-4}} \\[7ex] = \dfrac{48.9}{10^{-4 - (-6)}} \\[7ex] = \dfrac{48.9}{10^{-4 + 6}} \\[7ex] = \dfrac{48.9}{10^2} \\[7ex] = \dfrac{48.9}{100} \\[5ex] = 0.489\:\:cm^2 \\[3ex] $ Second Method: Proportional Reasoning Method

Let:
$p$ = converted unit from $mm^2$ to $m^2$
$d$ = converted unit from $m^2$ to $cm^2$

$ 1\:mm = 10^{-3}\:m \\[3ex] 1\:mm = 0.001\:m \\[3ex] Square\:\:both\:\:sides \\[3ex] (1\:mm)^2 = (0.001\:m)^2 \\[3ex] 1^2 * mm^2 = 0.001^2 * m^2 \\[3ex] 1\:mm^2 = 0.000001\:m^2 \\[3ex] $
$mm^2$ $m^2$
$1$ $0.000001$
$48.9$ $p$

$ \dfrac{p}{48.9} = \dfrac{0.000001}{1} \\[5ex] Multiply\:\:both\:\:sides\:\:by\:\:48.9 \\[3ex] 48.9 * \dfrac{p}{48.9} = 48.9 * \dfrac{0.000001}{1} \\[5ex] p = 48.9(0.000001) \\[3ex] p = 0.0000489\:m^2 \\[3ex] 1\:cm = 10^{-2}\:m \\[3ex] 1\:cm = 0.01\:m \\[3ex] Square\:\:both\:\:sides \\[3ex] (1\:cm)^2 = (0.01\:m)^2 \\[3ex] 1^2 * cm^2 = 0.0001^2 * m^2 \\[3ex] 1\:cm^2 = 0.0001\:m^2 \\[3ex] $
$m^2$ $cm^2$
$0.0001$ $1$
$0.0000489$ $d$

$ \dfrac{d}{1} = \dfrac{0.0000489}{0.0001} \\[5ex] d = 0.489\:cm^2 $
(52.) One cubic foot holds 7.48 gallons of water, and 1 gallon of water weighs 8.33 pounds.
How much does 7.2 cubic feet of water weigh:
(a.) in pounds?
(b.) in tons?


First Method: Unity Fraction Method

$ (a.)\;\;cubic\;feet\;\;to\;\;pounds \\[3ex] cubic\;feet * \dfrac{.......gallon}{.......cubic\;feet} * \dfrac{.......pound}{.......gallon} \\[5ex] 7.2\;cubic\;feet * \dfrac{7.48\;gallon}{1\;cubic\;feet} * \dfrac{8.33\;pound}{1\;gallon} \\[5ex] = 448.62048\;pounds \\[3ex] (b.)\;\;cubic\;feet\;\;to\;\;tons \\[3ex] cubic\;feet * \dfrac{.......gallon}{.......cubic\;feet} * \dfrac{.......pound}{.......gallon} * \dfrac{.......ton}{.......pound} \\[5ex] 7.2\;cubic\;feet * \dfrac{7.48\;gallon}{1\;cubic\;feet} * \dfrac{8.33\;pound}{1\;gallon} * \dfrac{1\;ton}{2000\;pound} \\[5ex] = 0.22431024\;tons $
(53.) ACT There are 66 calories in 15 grams of grated Parmesan cheese, and 59% of those calories are from fat.
When measuring Parmesan cheese, 5 grams is equal to I tablespoon.
Which of the following is closest to the number of calories from fat per tablespoon of grated Parmesan cheese?

$ F.\;\; 3 \\[3ex] G.\;\; 8 \\[3ex] H.\;\; 9 \\[3ex] J.\;\; 13 \\[3ex] K.\;\; 22 \\[3ex] $

First Method: Unity Fraction Method

$ To\;\;Find:\;\;calories\;\;per\;\;tablespoon \\[3ex] \dfrac{66\;calories}{15\;grams} * \dfrac{........grams}{..........tablespoon} \\[5ex] = \dfrac{66\;calories}{15\;grams} * \dfrac{5\;grams}{1\;tablespoon} \\[5ex] = 22\;calories \\[3ex] Calories\;\;from\;\;fat \\[3ex] = 59\%\;\;of\;\; 22\;calories \\[3ex] = 0.59(22) \\[3ex] = 12.98 \\[3ex] \approx 13\;calories $
(54.) ACT A chemist needs 1 ounce of element X.
The only way which the chemist can get element X is to buy compound Y, which contains 10% X.
Compound Y costs $2.40 per pound (16 ounces).
How much must the chemist pay in order to ensure that she receives 1 ounce of element X ?

$ F.\;\; \$\; .15 \\[3ex] G.\;\; \$\; .24 \\[3ex] H.\;\; \$1.50 \\[3ex] J.\;\; \$2.40 \\[3ex] K.\;\; \$3.84 \\[3ex] $

Second Method: Proportional Reasoning Method
Compound Y
ounces cost ($)
16 2.40
1 p

$ \dfrac{p}{1} = \dfrac{2.40}{16} \\[5ex] p = \$0.15 \\[3ex] $
Compounds Y and X
cost ($) % of X
0.15 10%
k 100%

$ k * 10\% = 0.15 * 100\% \\[3ex] k * 0.1 = 0.15 * 1 \\[3ex] 0.1k = 0.15 \\[3ex] k = \dfrac{0.15}{0.1} \\[5ex] k = \$ 1.5 \\[3ex] $ The chemist must pay $1.50 in order to ensure that she receives 1 ounce of element X
(55.) A certain race is a distance of 10 furlongs.
How far is the race in:
(a.) yards?
(b.) miles?


First Method: Unity Fraction Method

$ (a.)\;\; furlong\;\;to\;\;yards \\[3ex] 10\;furlong * \dfrac{.......rod}{.......furlong} * \dfrac{.......yd}{.......rd} \\[5ex] = 10\;furlong * \dfrac{40\;rod}{1\;furlong} * \dfrac{5.5\;yd}{1\;rod} \\[5ex] = 2200\;yards \\[3ex] (b.)\;\;furlong\;\;to\;\;miles \\[3ex] 10\;furlong * \dfrac{.......rod}{.......furlong} * \dfrac{.......yd}{.......rd} * \dfrac{.......miles}{.......yd} \\[5ex] = 10\;furlong * \dfrac{40\;rod}{1\;furlong} * \dfrac{5.5\;yd}{1\;rod} * \dfrac{1\;mi}{1760\;yd} \\[5ex] = \dfrac{2200}{1760}\;miles \\[5ex] = 1.25\;miles $
(56.)

(57.) Decide whether the following statement makes sense​ (or is clearly​ true) or does not make sense​ (or is clearly​ false).
Explain your reasoning. Be sure to consider whether the units are appropriate to the​ statement, as well as whether the stated amount makes any sense.
For​ example, a statement that someone is 15 feet tall uses the units​ (feet) appropriately, but does not make sense because no one is that tall.

(a.) I drank 1.3 liters of water today.
(b.) I know a professional bicyclist who weighs 250 kilograms.
(c.) My​ car's gas tank holds 17 meters of gasoline.
(d.) My daily food intake gives me about 10 million joules of energy.
(e.) The beach ball we played with has a density of 10 grams per cubic centimeter.
(f.) I live in a big city with a population density of 15 people per square kilometer.


Unity Fraction method is used as applicable.

$ (a.) \\[3ex] L\;\;to\;\;gal \\[3ex] 1\;L = 0.26417205\;gal \\[3ex] 1.3L * \dfrac{0.26417205gal}{1L} \\[5ex] = 0.343423665gal \\[3ex] $ This statement makes sense because 1.3 liters ≈ ​gallon(s), which is a reasonable amount of water to drink in one day.

$ (b.) \\[3ex] kg\;\;to\;\;lb \\[3ex] 1\;lb = 453.59237\;g \\[3ex] 250kg * \dfrac{10^3g}{1kg} * \dfrac{1lb}{453.59237g} \\[5ex] = 551.15565555lb \\[3ex] $ This statement does not make sense because 250 kilograms ≈ 551.3 ​pound(s), which is an unreasonable weight for a professional bicyclist.

(c.) This statement does not make sense because a meter is not a unit of volume.

(d.) This statement makes sense because one calorie equals​ 4,184 joules.
A typical adult consumes about​ 2,500 calories of energy each​ day, which equals about 10 million joules per day.

(e.) This statement does not make sense because 10 grams per cubic centimeter is far greater than the density of​ water, which is 1 gram per cubic centimeter.
Not only would this beach ball be​ heavy, it would sink in water.

(f.) The statement does not make sense because the population density given is small so the city would be a small city rather than a big city.
(58.) ACT On a map, $\dfrac{1}{4}$ inch represents 16 actual miles.

Two towns that are $2\dfrac{3}{4}$ inches apart on this map are how many actual miles apart?

$ F.\;\; 11 \\[3ex] G.\;\; 16 \\[3ex] H.\;\; 44 \\[3ex] J.\;\; 64 \\[3ex] K.\;\; 176 \\[3ex] $

First Method: Unity Fraction Method

$ 2\dfrac{3}{4}\;inches * \dfrac{......miles}{.........inches} \\[5ex] - \dfrac{11}{4}\;inches * \dfrac{16\;miles}{\dfrac{1}{4}\;inches} \\[7ex] = \dfrac{11}{4} * 16 \div \dfrac{1}{4} \\[5ex] = \dfrac{11}{4} * \dfrac{16}{1} * \dfrac{4}{1} \\[5ex] = 176\;miles \\[3ex] $ Second Method: Proportional Reasoning Method
Let $p$ be the number of actual miles that is represented by $2\dfrac{3}{4}$ inches
inch miles
$\dfrac{1}{4}$ $16$
$2\dfrac{3}{4} = \dfrac{11}{4}$ $p$

$ 2\dfrac{3}{4} = \dfrac{4 * 2 + 3}{4} = \dfrac{8 + 3}{4} = \dfrac{11}{4} \\[5ex] \dfrac{p}{16} = \dfrac{\dfrac{11}{4}}{\dfrac{1}{4}} \\[7ex] Multiply\:\:both\:\:sides\:\:by\:\: 16 \\[3ex] 16 * \dfrac{p}{16} = 16 * \dfrac{\dfrac{11}{4}}{\dfrac{1}{4}} \\[7ex] p = \dfrac{\dfrac{16 * 11}{4}}{\dfrac{1}{4}} \\[7ex] p = \dfrac{\dfrac{176}{4}}{\dfrac{1}{4}} \\[7ex] p = \dfrac{176}{4} \div \dfrac{1}{4} \\[5ex] p = \dfrac{176}{4} * \dfrac{4}{1} \\[5ex] p = 176\:miles \\[3ex] $ $2\dfrac{3}{4}$ inches represents $176$ miles
(59.) The depth of a certain part of the Earth's seabed is 36,054 feet.
How deep is it in:
(a.) fathoms?
(b.) league (marine)?


First Method: Unity Fraction Method

$ (a.)\;\; feet\;\;to\;\;fathom \\[3ex] 36054\;feet * \dfrac{.......fathom}{.......feet} \\[5ex] = 36054 * \dfrac{1\;fathom}{6\;ft} \\[5ex] = 6009\;ft \\[3ex] (b.)\;\; feet\;\;to\;\;league \\[3ex] 36054\;feet * \dfrac{.......meter}{.......feet} * \dfrac{.......kilometer}{.......meter} * \dfrac{.......nautical\;\;mile}{.......kilometer} * \dfrac{.......league}{.......nautical\;\;mile} \\[5ex] = 36054\;feet * \dfrac{0.3048\;meter}{1\;feet} * \dfrac{1\;kilometer}{10^3\;meter} * \dfrac{1\;nautical\;\;mile}{1.852\;kilometer} * \dfrac{1\;league}{3\;nautical\;\;mile} \\[5ex] = \dfrac{36054 * 0.3048}{1000 * 1.852 * 3}\;league \\[5ex] = \dfrac{10989.2592}{5556}\;league \\[5ex] = 1.977908423\;league $
(60.)





Top




(61.) A boat has a top speed of 28 knots and a displacement of approximately 94,000 tons.

Express the:
(a.) top speed in miles per hour.
(b.) displacement in metric tonnes.

​(1 knot = 1 nautical mile per​ hour; 1 metric tonne = 1000 ​kilograms)


Unity Fraction method is used as applicable

(a.) 28 knots to miles per hour
1 knot = 1 nautical mile per​ hour
⇒ 28 nautical miles per hour to miles per hour
1 nautical mile = 1.852 kilometers
1 kilometer = $10^3$ meters = 1000 meters
1 feet = 0.3048 meter
1 mile = 5280 feet

$ \dfrac{28\;nautical\;\;miles}{hour} * \dfrac{.......km}{.......nautical\;\;miles} * \dfrac{.......m}{.......km} * \dfrac{.......ft}{.......m} * \dfrac{.......mi}{.......ft} \\[5ex] \dfrac{28\;nautical\;\;miles}{hour} * \dfrac{1.852km}{1\;nautical\;\;miles} * \dfrac{10^3m}{1km} * \dfrac{1ft}{0.3048m} * \dfrac{1mi}{5280ft} \\[5ex] \dfrac{51856\;mi}{1609.344\;hour} \\[5ex] 32.22182454\;miles\;\;per\;\;hour \\[3ex] $ (b.) 94,000 tons to metric tonnes
94,000 short tons to metric tonnes
1 short ton = 2000 pounds
1 pound = 453.59237 grams
1 kg = $10^3$ grams = 1000grams
1 metric tonne = 1000 ​kilograms

$ 94000\;short\;\;ton * \dfrac{.......pound}{.......short\;\;ton} * \dfrac{.......gram}{.......pound} * \dfrac{.......kilogram}{.......gram} * \dfrac{.......metric\;\;tonne}{.......kilogram} \\[5ex] 94000\;short\;\;ton * \dfrac{2000\;pound}{1\;short\;\;ton} * \dfrac{453.59237\;gram}{1\;pound} * \dfrac{1\;kilogram}{1000\;gram} * \dfrac{1\;metric\;\;tonne}{1000\;kilogram} \\[5ex] 85275.36556\;metric\;\;tonne $
(62.) ACT Tina runs at a rate of 8 miles per hour.
At that rate, how many miles will she run in 12 minutes?

$ A.\;\; \dfrac{5}{8} \\[5ex] B.\;\; \dfrac{2}{3} \\[5ex] C.\;\; 1\dfrac{1}{2} \\[5ex] D.\;\; 1\dfrac{3}{5} \\[5ex] E.\;\; 2 \\[3ex] $

First Method: Unity Fraction Method

$ 12\;minutes * \dfrac{........hour}{........minutes} * \dfrac{.........miles}{........hour} \\[5ex] = 12\;minutes * \dfrac{1\;hour}{60\;minutes} * \dfrac{8\;miles}{1\;hour} \\[5ex] = \dfrac{8\;miles}{5} \\[5ex] = 1\dfrac{3}{5}\;miles \\[5ex] $ Third Method: Fast Proportional Reasoning Method
Let $p$ be the number of miles she will run in 12 minutes
miles hour minutes
8 1 60
$p$ 12

$ \dfrac{p}{8} = \dfrac{12}{60} \\[5ex] p = \dfrac{8 * 12}{60} \\[5ex] p = \dfrac{8 * 1}{5} \\[5ex] p = 1\dfrac{3}{5}\;miles \\[5ex] $ She will run $1\dfrac{3}{5}$ miles in 12 minutes.
(63.) Write out the three steps of the​ UnderstandSolveExplain process when answering these questions.

(I.) A​ child's inflatable pool holds 20 cubic feet of water.
How much does the water in the pool​ weigh?
Useful​ data: 1 cubic foot of water weighs 64.2 pounds.

(II.) How fast does Earth rotate?
Note that in one full rotation of Earth, a point on the equator travels about 25,000 miles in 24 hours.


(I.) Understand: How much does the water in the pool​ weigh?
The unknown in the problem is: The weight of the water in the pool

Solve: 1 cubic foot of water weighs 64.2 pounds.
So, 20 cubic feet of water will weigh: 20(64.2) = 1284 pounds.

Explain:
First Method: Unity Fraction Method

$ 20\;ft^3 * \dfrac{........pounds}{........ft^3} \\[5ex] = 20\;ft^3 * \dfrac{64.2\;pounds}{1\;ft^3} \\[5ex] = 1284\;pounds \\[3ex] $ OR
Second Method: Proportional Reasoning Method
Volume (ft³) Pound (lbs)
1 64.2
20 what

$ 1 * what = 20 * 64.2 \\[3ex] what = 1284\;pounds \\[3ex] $ 20 cubic feet of water will weigh: 1284 pounds.

(II.) Understand: How fast does Earth rotate?
The unknown in the problem is: The speed

Solve: and Explain: travels 25,000 miles in 24 hours.
So, in unit of miles per hour:

$ speed = \dfrac{distance}{time} \\[5ex] distance = 25000\;miles \\[3ex] time = 24\;hours \\[3ex] speed = \dfrac{25000}{24} = 1041.666667 \approx 1041.7\;miles\;\;per\;\;hour \\[5ex] $ The earth rotates at a speed of approximately 1041.7 miles per hour.
(64.)

(65.) Answer these questions using the Unity Fraction method and/or the Proportional Reasoning method.
You may also use any other appropriate method as applicable.

(I.) How much will a person pay for 3.1 pounds of bananas at a price of $0.73 per pound?

(II.) If a person is paid $490 for 27 hours of work, what is the person's hourly wage?

(III.) What is the total weight of 12 basketballs that weigh 25 ounces each?

(IV.) How many buses are needed to transport 300 people if each bus holds 25 people?


(I.) Per pound means per 1 pound
$ 3.1\;pounds * \dfrac{........\$}{........pound} \\[5ex] = 3.1\;pounds * \dfrac{0.73\;\$}{1\;pound} \\[5ex] = \$2.263 \\[3ex] \approx \$2.26 \\[3ex] $ Units in question are: pound and dollars
Proportional Reasoning
pound dollars, $
1 0.73
3.1 what

$ \dfrac{what}{3.1} = \dfrac{0.73}{1} \\[5ex] what = 3.1 * 0.73 \\[3ex] = \$2.263 \\[3ex] $ The price the person will pay is 2.26 dollars

(II.) The person's hourly wage is the amount the person is paid per hour

$ 1\;hour * \dfrac{........\$}{........hour} \\[5ex] = 1\;hour * \dfrac{490\;\$}{27\;hours} \\[5ex] = \$18.14814815 \\[3ex] \approx \$18.15 \\[3ex] $ Units in question are: hours and dollars
Proportional Reasoning
hour dollars, $
1 0.73
3.1 what

$ \dfrac{what}{3.1} = \dfrac{0.73}{1} \\[5ex] what = 3.1 * 0.73 \\[3ex] = \$2.263 \\[3ex] $ The person's wage is 18.15 dollars per hour.

(III.) Each basketball weighs 25 ounces

$ 12\;basketballs * \dfrac{........ounces}{........basketball} \\[5ex] = 12\;basketballs * \dfrac{25\;ounces}{1\;basketball} \\[5ex] = 300\;ounces \\[3ex] $ The total weight of the basketballs is 300 ounces.

(IV.) Each bus holds 25 people

$ 300\;people * \dfrac{........bus}{........people} \\[5ex] = 300\;people * \dfrac{1\;bus}{25\;people} \\[5ex] = 12\;buses \\[3ex] $ To transport 300 people, 12 buses are needed.
(66.) ACT Marcus's favorite casserole recipe requires 3 eggs and makes 6 servings.
Marcus will modify the recipe by using 5 eggs and increasing all other ingredients in the recipe proportionally.
What is the total number of servings the modified recipe will make?

$ A.\;\; 6 \\[3ex] B.\;\; 8 \\[3ex] C.\;\; 10 \\[3ex] D.\;\; 12 \\[3ex] E.\;\; 15 \\[3ex] $

First Method: Unity Fraction Method

$ 5\;eggs * \dfrac{........servings}{........eggs} \\[5ex] = 5\;eggs * \dfrac{6\;servings}{3\;eggs} \\[5ex] = 10\;servings \\[3ex] $ Second Method: Proportional Reasoning Method
Let $p$ be the total number of servings the modified recipe will make
eggs servings
3 6
5 $p$

$ \dfrac{p}{6} = \dfrac{5}{3} \\[5ex] 3p = 5(6) \\[3ex] p = \dfrac{5(6)}{3} \\[5ex] p = 10\;servings \\[3ex] $ The total number of servings the modified recipe will make is 10 servings.
(67.) Convert 7500 meter per second to kilometer per second


Measurement is Speed

$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 7500\:m/s\:\:to\:\:km/s \\[3ex] 7500\dfrac{m}{s} * \dfrac{.....km}{.....m} \\[5ex] 7500\dfrac{m}{s} * \dfrac{1\:km}{10^3\:m} \\[5ex] 7500\dfrac{m}{s} * \dfrac{1\:km}{1000\:m} \\[5ex] = 7.5\:km/s \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:km\:\:for\:\:7500\:m \\[3ex] \dfrac{7500\:m}{1\:s} = \dfrac{x\:km}{1\:s} \\[5ex] $
$m$ $km$
$10^3 = 1000$ $1$
$7500$ $x$

$ \dfrac{1000}{7500} = \dfrac{1}{x} \\[5ex] OR \\[3ex] \dfrac{7500}{1000} = \dfrac{x}{1} \\[5ex] 7.5 = x \\[3ex] x = 7.5\:km \\[3ex] \therefore \dfrac{7500\:m}{1\:s} = \dfrac{7.5\:km}{1\:s} \\[5ex] 7500\:m/s = 7.5\:km/s $
(68.)

(69.) Perform the following conversions.
(a.) 25 liters to quarts
(b.) 4.6 meters to feet
(c.) 6 pounds to kilograms



$ (a.) \\[3ex] 1\;liter = 0.26417205\;gallon \\[3ex] 1\;gallon = 4\;quart \\[3ex] 25\;liters * \dfrac{.......gallons}{.......liters} * \dfrac{.......quarts}{.......gallons} \\[5ex] 25\;liters * \dfrac{0.26417205\;gallon}{1\;liter} * \dfrac{4\;quarts}{1\;gallon} \\[5ex] 26.417205\;quarts \\[5ex] (b.) \\[3ex] 1\;foot = 0.3048\;meter \\[3ex] 4.6\;meters * \dfrac{.......feet}{.......meters} \\[5ex] 4.6\;meters * \dfrac{1\;feet}{0.3048\;meters} \\[5ex] 15.0918635\;feet \\[5ex] (c.) \\[3ex] 1\;pound = 453.59237\;grams \\[3ex] 6\;pounds * \dfrac{.......grams}{.......pounds} * \dfrac{.......kilograms}{.......grams} \\[5ex] 6\;pounds * \dfrac{453.59237\;grams}{1\;pounds} * \dfrac{1\;kilograms}{10^3\;grams} \\[5ex] \dfrac{6 * 453.59237}{1000} kilograms \\[5ex] 2.72155422\;kilograms \\[5ex] $
(70.) ACT A room has a rectangular floor that is 15 feet by 21 feet.
What is the area of the floor in square yards?

$ A.\;\; 24 \\[3ex] B.\;\; 35 \\[3ex] C.\;\; 36 \\[3ex] D.\;\; 105 \\[3ex] E.\;\; 144 \\[3ex] $

$ Area\:\;in\:\:square\:\:feet = 15\:feet * 21\:feet = 315\:square\:feet \\[3ex] Convert\:\: 315\:feet^2 \:\:to\:\: yard^2 \\[3ex] $ First Method: Unity Fraction Method

$ 315\:ft^2\:\:to\:\:yd^2 \\[3ex] 315\:ft * ft * \dfrac{.....yd}{.....ft} * \dfrac{.....yd}{.....ft} \\[5ex] 315\:ft * ft * \dfrac{1\:yd}{3\:ft} * \dfrac{1\:yd}{3\:ft} \\[5ex] = \dfrac{315 * 1 * 1}{3 * 3} \\[5ex] = \dfrac{315}{9} \\[5ex] = 35\:yd^2 \\[3ex] $ Second Method: Proportional Reasoning Method
Let $c$ = converted unit from $ft^2$ to $yd^2$

$ 3\:ft = 1\:yd \\[3ex] Square\:\:both\:\:sides \\[3ex] (3\:ft)^2 = (1\:yd)^2 \\[3ex] 3^2 * ft^2 = 1^2 * yd^2 \\[3ex] 9\:ft^2 = 1\:yd^2 \\[3ex] $
$ft^2$ $yd^2$
$9$ $1$
$315$ $c$

$ \dfrac{c}{1} = \dfrac{315}{9} \\[5ex] c = 35\:yd^2 \\[3ex] \therefore 2700\:ft^2 = 35\:yd^2 $
(71.) Convert 7500 meter per second to kilometer per hour


$ \underline{First\:\:Method:\:\:Unity\:\:Fraction\:\:Method} \\[3ex] 7500\:m/s\:\:to\:\:km/hr \\[3ex] 7500\dfrac{m}{s} * \dfrac{.....km}{.....m} * \dfrac{.....s}{.....min} * \dfrac{.....min}{.....hr} \\[5ex] 7500\dfrac{m}{s} * \dfrac{1\:km}{10^3\:m} * \dfrac{60\:s}{1\:min} * \dfrac{60\:min}{1\:hr} \\[5ex] 7500\dfrac{m}{s} * \dfrac{1\:km}{1000\:m} * \dfrac{60\:s}{1\:min} * \dfrac{60\:min}{1\:hr} \\[5ex] = \dfrac{7500 * 60 * 60}{1000 * 1 * 1} \\[5ex] = \dfrac{27000000}{1000} \\[5ex] = 27000\:km/hr \\[3ex] \underline{Second\:\:Method:\:\:Proportional\:\:Reasoning\:\:Method} \\[3ex] Per\:\:second\:\:means\:\:1\:\:second \\[3ex] Per\:\:hour\:\:means\:\:1\:\:hour \\[3ex] Let\:\:x\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:km\:\:for\:\:7500\:m \\[3ex] Let\:\:p\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:60\:s \\[3ex] Let\:\:y\:\:be\:\:the\:\:converted\:\:unit\:\:in\:\:hr\:\:for\:\:1\:s \\[3ex] \dfrac{7500\:m}{1\:s} = \dfrac{x\:km}{y\:hr} \\[5ex] $
Numerator
$m$ $km$
$10^3 = 1000$ $1$
$7500$ $x$

$ \dfrac{7500}{1000} = \dfrac{x}{1} \\[5ex] 7.5 = x \\[3ex] x = 7.5\:km \\[3ex] $
Denominator
$s$ $min$ $hr$
$60$ $1$ $p$
$60$ $1$
$1$ $y$

$ \dfrac{1}{60} = \dfrac{p}{1} \\[5ex] \dfrac{1}{60} = p \\[5ex] p = \dfrac{1}{60} \\[5ex] Next: \\[3ex] \dfrac{60}{1} = \dfrac{x}{y} \\[5ex] Cross\:\:Multiply \\[3ex] 60y = p(1) \\[3ex] 60y = p \\[3ex] y = \dfrac{p}{60} \\[5ex] y = p \div 60 \\[3ex] y = \dfrac{1}{60} \div \dfrac{60}{1} \\[5ex] y = \dfrac{1}{60} * \dfrac{1}{60} \\[5ex] y = \dfrac{1 * 1}{60 * 60} \\[5ex] y = \dfrac{1}{3600} \\[5ex] \implies 1\:s = \dfrac{1}{3600}\:hr \\[5ex] \dfrac{x\:km}{y\:hr} = x \div y \\[5ex] = 7.5 \div \dfrac{1}{3600} \\[5ex] = 7.5 * \dfrac{3600}{1} \\[5ex] = 7.5(3600) \\[3ex] = 27000\:km/hr \\[3ex] \therefore 7500\:m/s = 27000\:km/hr $
(72.)

(73.) Two races that a student runs every year are the 2​-mile race in his hometown and the 1494​-meter race in his college town.
Use the Table and the Conversion Factors to answer the questions.

Number 73

Hometown and College Town Races
Student Other Students
Hometown 13:15:34 14:19:41
College Town 12:33:00 13:41:27

(a.) The college town is ............ percent of the hometown race in length.
Consider the​ student's personal records shown in the table for the two races.
(b.) What is the​ student's average speed in the hometown race in miles per​ hour?
(c.) What is the​ student's average speed in the college town race in miles per​ hour?
(d.) What is the​ other students' average speed in the hometown race in miles per​ hour?
(e.) What is the​ other students' average speed in the college town race in miles per​ hour?
(f.) If the average speed for the college town race were run for the entire length of the hometown​ race, would the student beat his personal​ record?
Would the other​ students?




(a.)
Length is the distance.
In other words, 1494 meters is ............ percent of 2 miles.
Let us convert 1494 meters to miles

$ 1494\;meters * \dfrac{.......feet}{.......meters} * \dfrac{.......miles}{.......feet} \\[5ex] 1494\;meters * \dfrac{3.28084\;feet}{1\;meters} * \dfrac{1\;miles}{5280\;feet} \\[5ex] 0.9283285909\;miles \\[3ex] $ In other words, 0.9283285909 miles is ............ percent of 2 miles.

$ \dfrac{is}{of} = \dfrac{\%}{100}...Percent-Proportion \\[5ex] \dfrac{0.9283285909}{2} = \dfrac{what}{100} \\[5ex] what = \dfrac{0.9283285909 * 100}{2} \\[5ex] what = 46.41642955 \\[3ex] what \approx 46\% \\[5ex] $ For each race, convert the time to hours.
Then divide the respective miles by the time (in hours) to convert to miles per hour.

Student
$ (b.) \\[3ex] \underline{Hometown} \\[3ex] 13:15:34 \\[3ex] 13\;minutes \\[3ex] 15\;seconds \\[3ex] 34\;fractional\;seconds \\[3ex] \implies \\[3ex] 13\;minutes * \dfrac{.......hours}{.......minutes} \\[5ex] + 15\;seconds * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] + 34\;fractional\;seconds * \dfrac{.......seconds}{.......fractional\;seconds} * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] = 13\;minutes * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 15\;seconds * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 34\;fractional\;seconds * \dfrac{1\;seconds}{60\;fractional\;seconds} * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] = \dfrac{13}{60}hours + \dfrac{15}{60 * 60}hours + \dfrac{34}{60 * 60 * 60}hours \\[5ex] = 0.2209907407\;hours \\[3ex] time = 0.2209907407\;hours \\[3ex] distance = 2\;miles \\[3ex] Average\;\;speed = \dfrac{distance}{time} \\[5ex] = \dfrac{2}{0.2209907407} \\[5ex] = 9.050152931 \\[3ex] \approx 9.05\;mph...to\;\;2...decimal\;\;places \\[5ex] (c.) \\[3ex] \underline{College\;\;Town} \\[3ex] 12:33:00 \\[3ex] 12\;minutes \\[3ex] 33\;seconds \\[3ex] 00\;\;fractional\;seconds \\[3ex] \implies \\[3ex] 12\;minutes * \dfrac{.......hours}{.......minutes} \\[5ex] + 33\;seconds * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] 12\;minutes * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 33\;seconds * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] = \dfrac{12}{60}hours + \dfrac{33}{60 * 60}hours \\[5ex] = \dfrac{251}{1200}hours \\[5ex] time = \dfrac{251}{1200}\;hours \\[5ex] distance = 14942\;meters = 0.9283285909\;miles \\[3ex] Average\;\;speed = \dfrac{distance}{time} \\[5ex] = distance \div time \\[3ex] = 0.9283285909 \div \dfrac{251}{1200} \\[5ex] = \dfrac{0.9283285909 * 1200}{251} \\[3ex] = 4.438224339 \\[3ex] \approx 4.44\;mph...to\;\;2...decimal\;\;places \\[3ex] $ Other Student
$ (d.) \\[3ex] \underline{Hometown} \\[3ex] 14:19:41 \\[3ex] 14\;minutes \\[3ex] 19\;seconds \\[3ex] 41\;fractional\;seconds \\[3ex] \implies \\[3ex] 14\;minutes * \dfrac{.......hours}{.......minutes} \\[5ex] + 19\;seconds * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] + 41\;fractional\;seconds * \dfrac{.......seconds}{.......fractional\;seconds} * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] = 14\;minutes * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 19\;seconds * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 41\;fractional\;seconds * \dfrac{1\;seconds}{60\;fractional\;seconds} * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] = \dfrac{14}{60}hours + \dfrac{19}{60 * 60}hours + \dfrac{41}{60 * 60 * 60}hours \\[5ex] = 0.2388009259\;hours \\[3ex] time = 0.2388009259\;hours \\[3ex] distance = 2\;miles \\[3ex] Average\;\;speed = \dfrac{distance}{time} \\[5ex] = \dfrac{2}{0.2388009259} \\[5ex] = 8.375176906 \\[3ex] \approx 8.38\;mph...to\;\;2...decimal\;\;places \\[5ex] (e.) \\[3ex] \underline{College\;\;Town} \\[3ex] 13:41:27 \\[3ex] 13\;minutes \\[3ex] 41\;seconds \\[3ex] 27\;fractional\;seconds \\[3ex] \implies \\[3ex] 13\;minutes * \dfrac{.......hours}{.......minutes} \\[5ex] + 41\;seconds * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] + 27\;fractional\;seconds * \dfrac{.......seconds}{.......fractional\;seconds} * \dfrac{.......minutes}{.......seconds} * \dfrac{.......hours}{.......minutes} \\[5ex] = 13\;minutes * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 41\;seconds * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] + 27\;fractional\;seconds * \dfrac{1\;seconds}{60\;fractional\;seconds} * \dfrac{1\;minutes}{60\;seconds} * \dfrac{1\;hours}{60\;minutes} \\[5ex] = \dfrac{13}{60}hours + \dfrac{41}{60 * 60}hours + \dfrac{27}{60 * 60 * 60}hours \\[5ex] = 0.2281805556\;hours \\[3ex] time = 0.2281805556\;hours \\[3ex] distance = 14942\;meters = 0.9283285909\;miles \\[3ex] Average\;\;speed = \dfrac{distance}{time} \\[5ex] = \dfrac{0.9283285909}{0.2281805556} \\[5ex] = 4.068394823 \\[3ex] \approx 4.07\;mph...to\;\;2...decimal\;\;places \\[3ex] $ (f.) If the student runs the hometown race at the same average speed as in the college town​ race, he will beat his personal record.
If other students run the hometown race at the same average speed as in the college town​ race, they will beat their record time.
(74.)

(75.)

(76.)

(77.)

(78.)

(79.) Convert 7600 square inches to square yards.


First Method: Unity Fraction Method

$ 7600\;in * in * \dfrac{.......ft}{.......in} * \dfrac{.......ft}{.......in} * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} \\[5ex] = 7600\;in * in * \dfrac{1\;ft}{12\;in} * \dfrac{1\;ft}{12\;in} * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} \\[5ex] = \dfrac{7600}{1296}\;yd^2 \\[5ex] = 5.864197531\;yd^2 \\[3ex] $ Second Method: Proportional Reasoning Method

$ 12\;in = 1\;ft \\[3ex] (12\;in)^2 = (1\;ft)^2 \\[3ex] 144\;in^2 = 1\;ft^2 \\[3ex] 7600\;in^2 = what\;ft^2 \\[3ex] $
in² ft²
144 1
7600 what

$ \dfrac{what}{1} = \dfrac{7600}{144} \\[5ex] what = 52.77777778\;ft^2 \\[3ex] $ 3\;ft = 1\;yd \\[3ex] (3\;ft)^2 = (1\;yd)^2 \\[3ex] 9\;ft^2 = 1\;yd^2 \\[3ex] 52.77777778\;ft^2 = what\;yd^2 \\[3ex] $
ft² yd²
9 1
52.77777778 what

$ \dfrac{what}{1} = \dfrac{52.77777778}{9} \\[5ex] what = 5.864197531\;yd^2 $
(80.) Convert the area of a​ field, 59,400 square feet to square yards.


First Method: Unity Fraction Method

$ 59400\;ft * ft * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} \\[5ex] = 59400\;ft * ft * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} \\[5ex] = \dfrac{59400}{9}\;yd^2 \\[5ex] = 6600\;yd^2 \\[3ex] $ Second Method: Proportional Reasoning Method

$ 3\;ft = 1\;yd \\[3ex] (3\;ft)^2 = (1\;yd)^2 \\[3ex] 9\;ft^2 = 1\;yd^2 \\[3ex] 59400\;ft^2 = what\;yd^2 \\[3ex] $
ft² yd²
9 1
59400 what

$ \dfrac{what}{1} = \dfrac{59400}{9} \\[5ex] what = 6600\;yd^2 $




Top




(81.) Convert a stream flow of 460$\dfrac{ft^3}{s}$ to $\dfrac{yd^3}{min}$


First Method: Unity Fraction Method

$ 460\;ft * ft * ft * \dfrac{1}{s} * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} * \dfrac{.......yd}{.......ft} * \dfrac{.......s}{.......min} \\[5ex] = 460\;ft * ft * ft * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} * \dfrac{1\;yd}{3\;ft} * \dfrac{60\;s}{1\;min} \\[5ex] = \dfrac{27600}{27}\dfrac{yd^3}{min} \\[5ex] = 1022.222222\;\dfrac{yd^3}{min} \\[5ex] $ Second Method: Proportional Reasoning Method

$ \underline{Numerator} \\[3ex] 3\;ft = 1\;yd \\[3ex] (3\;ft)^3 = (1\;yd)^3 \\[3ex] 27\;ft^3 = 1\;yd^3 \\[3ex] 460\;ft^3 = what\;yd^3 \\[3ex] $
Numerator
ft³ yd³
27 1
460 what

$ \dfrac{what}{1} = \dfrac{460}{27} \\[5ex] what = \dfrac{460}{27}\;yd^3 \\[5ex] Also: \\[3ex] 60\;s = 1\;min \\[3ex] $
Denominator
s min
60 1
1 what

$ \dfrac{what}{1} = \dfrac{1}{60} \\[5ex] what = \dfrac{1}{60}\;min \\[5ex] \dfrac{Numerator}{Denominator} \\[5ex] Numerator \div Denominator \\[3ex] \dfrac{460}{27}\;yd^3 \div \dfrac{1}{60}\;min \\[5ex] \dfrac{460}{27} * \dfrac{60}{27} \\[5ex] \dfrac{27600}{27}\dfrac{yd^3}{min} \\[5ex] 1022.222222\;\dfrac{yd^3}{min} $
(82.)

(83.) Convert a housing price of $156/ft² to euro/m².
Use the conversion rate: 1 meter (m) = 3.28 ft and 1 euro = $1.225


First Method: Unity Fraction Method

$ \$ 156\; * \dfrac{1}{ft} * \dfrac{1}{ft} * \dfrac{.......euro}{.......\$} * \dfrac{.......ft}{.......m} * \dfrac{.......ft}{.......m} \\[5ex] = \$ 156\; * \dfrac{1}{ft} * \dfrac{1}{ft} * \dfrac{1\;euro}{\$\;1.225} * \dfrac{3.28\;ft}{1\;m} * \dfrac{3.28\;ft}{1\;m} \\[5ex] = \dfrac{1678.3104}{1.225}\dfrac{euro}{m^2} \\[5ex] = 1370.049306\;euro/m^2 \\[5ex] $ Second Method: Proportional Reasoning Method
$156/ft² = $156 ÷ 1 ft²

$ \underline{Numerator} \\[3ex] \$1.225 = 1\;euro \\[3ex] \$156 = what\;euro \\[3ex] $
Numerator
$ euro
1.225 1
156 what

$ \dfrac{what}{1} = \dfrac{156}{1.225} \\[5ex] what = 127.3469388\;euro \\[5ex] \underline{Denominator} \\[3ex] 3.28\;ft = 1\;m \\[3ex] (3.28\;ft)^2 = (1\;m)^2 \\[3ex] 10.7584\;ft^2 = 1\;m^2 \\[3ex] 1\;ft^2 = what\;m^2 \\[3ex] $
Denominator
ft²
10.7584 1
1 what

$ \dfrac{what}{1} = \dfrac{1}{10.7584} \\[5ex] what = 0.0929506246\;m^2 \\[5ex] \dfrac{Numerator}{Denominator} \\[5ex] Numerator \div Denominator \\[3ex] 127.3469388\;euro \div 0.0929506246\;m^2 \\[3ex] = 1370.049306\;euro/m^2 $
(84.)

(85.)

(86.)

(87.)

(88.)

(89.)

(90.)

(91.)

(92.)

(93.)

(94.)

(95.)

(96.)

(97.)

(98.)

(99.)

(100.)





Top




(101.)

(102.)

(103.)

(104.)