Processing math: 90%

Solved Examples: Arithmetic Operations on Measurements, Units, and Conversions

Pre-requisites:
(1.) Metric System
(2.) Customary System
(3.) All Measurements and Conversions

Samuel Dominic Chukwuemeka (SamDom For Peace) For ACT Students
The ACT is a timed exam...60 questions for 60 minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for any wrong answer.

For JAMB and CMAT Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.

Solve all questions.
Use at least two methods as applicable.
State the measurement.
Show all work.


NOTE: Unless specified otherwise:
(1.) Use only the tables provided for you.
(2.) Please do not approximate intermediate calculations.
(3.) Please do not approximate final calculations. Leave your final answer as is.
Metric to Metric Conversions
Prefix Symbol Multiplication Factor
yocto y 1024
zepto z 1021
atto a 1018
femto f 1015
pico p 1012
nano n 109
micro μ 106
milli m 103
centi c 102
deci d 101
deka da 101
hecto h 102
kilo K 103
mega M 106
giga G 109
tera T 1012
peta P 1015
exa E 1018
zetta Z 1021
yotta Y 1024


Customary to Customary Conversions
Measurement Customary Customary Unit Conversion Factor
Length inch (in) foot (ft) 12inches=1ft
Length foot (ft) yard (yd) 3ft=1yd
Length yard (yd) mile (mi) 1760yd=1mi
Length foot (ft) mile (mi) 5280ft=1mi
Length rod/pole yards (yd) 1rod=5.5yd
Length furlong rod 1furlong=40rod
Length fathom feet (ft) 1fathom=6ft
Length league/marine nautical miles 1league=3nauticalmiles
Mass pound (lb) ounce (oz) 1lb=16oz
Mass short ton (ton) pound (lb) 1shortton=2000lb
Mass long ton pound (lb) 1longton=2240lb
Mass stone pound (lb) 1stone=14lb
Mass long ton stone 1longton=160stones
Area acre (acre) square feet (ft2) 1acre=43560ft2
Volume quart (qt) pint (pt) 1qt=2pt
Volume pint (pt) cup (cup) 1pt=2cups
Volume quart (qt) cup (cup) 1qt=4cups
Volume quart (qt) fluid ounce (fl. oz) 1qt=32fl.oz
Volume pint (pt) fluid ounce (fl. oz) 1pt=16fl.oz
Volume cup (cup) fluid ounce (fl. oz) 1cup=8fl.oz
Volume gallon (gal) quart (qt) 1gal=4qt
Volume gallon (gal) quart (pt) 1gal=8pt
Volume gallon (gal) cup (cup) 1gal=16cups
Volume gallon (gal) fluid ounce (fl. oz) 1gal=128fl.oz
Volume gallon (gal) cubic inches (in3) 1gal=231in3


Metric to Customary Conversions
Measurement Metric Customary Unit Conversion Factor
Length meter (m) foot (ft) 1ft=0.3048m
Length nautical miles kilometer (km) 1nauticalmile=1.852km
Mass gram (kg) pound (lb) 1lb=453.59237g
Mass metric ton (tonne) kilogram (kg) 1tonne=1000kg
Volume liter or cubic decimeters (L or dm3) gallons (gal) 1L=0.26417205gal


(1.) ACT Shown below, a board 9 feet 4 inches long is cut into 2 equal parts.
What is the length, to the nearest inch, of each part?

Number 1

F. 4 feet 5 inches
G. 4 feet 7 inches
H. 4 feet 8 inches
J. 5 feet 4 inches
K. 5 feet 5 inches


We can do this question in at least two ways.
Use any method you prefer.
The first method is recommended for ACT

FirstMethod_For:9feet4inchesFirstStep:Dividethelastunit(inches)by2...FirstQuotient4inches2=2inchesSecondStep:Dividethefirstunit(feet)by2...SecondQuotientThen,convertanydecimalparttoinches9feet2=4.5feet=4feet+0.5feet1foot=12inches0.5foot=0.5(12)=6inchesThirdStep:Addthecorrespondingunitsfrombothquotients2inches+6inches=8inches0feet+4feet=4feet
(2.) ACT Shown below, a board 11 feet 4 inches long is cut into 2 equal parts.
What is the length, to the nearest inch, of each part?

Number 2

F. 5 feet 5 inches
G. 5 feet 7 inches
H. 5 feet 8 inches
J. 6 feet 5 inches
K. 6 feet 6 inches


We can do this question in at least two ways.
Use any method you prefer.
The first method is recommended for ACT

\underline{First\:\:Method} \\[3ex] For:\:\:11\:feet\:\:\:4\:inches \\[3ex] First\:\:Step: \\[3ex] Divide\:\:the\:\:last\:\:unit(inches)\:\:by\:\:2...First\:\:Quotient \\[3ex] \dfrac{4\:inches}{2} = 2\:inches \\[5ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:first\:\:unit(feet)\:\:by\:\:2...Second\:\:Quotient \\[3ex] Then,\:\:convert\:\:any\:\:decimal\:\:part\:\:to\:\:inches \\[3ex] \dfrac{11\:feet}{2} = 5.5\:feet = 5\:feet + 0.5\:feet \\[5ex] 1\:foot = 12\:inches \\[3ex] 0.5\:foot = 0.5(12) = 6\:inches \\[3ex] Third\:\:Step: \\[3ex] Add\:\:the\:\:corresponding\:\:units\:\:from\:\:both\:\:quotients \\[3ex] 2\:inches + 6\:inches = 8\:inches \\[3ex] 0\:feet + 5\:feet = 5\:feet \\[3ex] \therefore \dfrac{11\:feet\:\:\:4\:inches}{2} = 5\:feet\:\:\:8\:inches \\[5ex] \underline{Second\:\:Method} \\[3ex] For:\:\:11\:feet\:\:\:4\:inches \\[3ex] First\:\:Step: \\[3ex] Convert\:\:to\:\:the\:\:last\:\:unit(inches) \\[3ex] 1\:foot = 12\:inches \\[3ex] 11\:feet = 11(12) = 132\:inches \\[3ex] 132\:inches + 4\:inches = 136\:inches \\[3ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:result\:\:by\:\:2 \\[3ex] \dfrac{136\:inches}{2} = 68\:inches \\[5ex] Third\:\:Step \\[3ex] Convert\:\:68\:\:inches\:\:to\:\:feet\:\:and\:\:inches \\[3ex] 12\:inches = 1\:foot \\[3ex] 68\:inches = \dfrac{68}{12} \\[5ex] = 5.66666667\:feet \\[3ex] = 5\:feet + 0.66666667\:feet \\[3ex] 0.66666667\:feet\:\:to\:\:inches \\[3ex] = 0.66666667(12) = 8\:inches \\[3ex] \therefore \dfrac{11\:feet\:\:\:4\:inches}{2} = 5\:feet\:\:\:8\:inches
(3.) (a.) A storage pod has a rectangular floor that measures 23 feet by 9 feet and a flat ceiling that is 8 feet above the floor.
Find the area of the floor and the volume of the pod.

(b.) A lap pool has a length of 26 ​yards, a width of 23 ​yards, and a depth of 5 yards.
Find the​ pool's surface area​ (the water​ surface) and the total volume of water that the pool holds.

(c.) A raised flower bed is 40 feet​ long, 4 feet​ wide, and 1.8 feet deep.
Find the area of the bed and the volume of soil it holds.


Area = Length * Width
Volume = Length * Width * Depth
Volume = Length * Width * Height

(a.) \\[3ex] \underline{Floor} \\[3ex] length = 23\;feet \\[3ex] width = 9\;feet \\[3ex] area = 23(9) \\[3ex] area = 207\;ft^2 \\[5ex] \underline{Pod} \\[3ex] height = 8\;feet \\[3ex] volume = 23(9)(8) \\[3ex] volume = 1656\;ft^3 \\[5ex] (b.) \\[3ex] \underline{Pool} \\[3ex] length = 26\;yards \\[3ex] width = 23\;yards \\[3ex] surface\;\;area = 26(23) \\[3ex] surface\;\;area = 598\;yard^2 \\[5ex] depth = 5\;yards \\[3ex] volume = 598(5) \\[3ex] volume = 2990\;yard^3 \\[5ex] (c.) \\[3ex] \underline{Flower\;\;Bed} \\[3ex] length = 40\;feet \\[3ex] width = 4\;feet \\[3ex] area = 40(4) \\[3ex] area = 160\;feet^2 \\[5ex] depth = 1.8\;feet \\[3ex] volume = 160(1.8) \\[3ex] volume = 288\;feet^3
(4.) ACT Shown below, a board 3 feet 8 inches long is cut into 2 equal parts.
What is the length, to the nearest inch, of each part?

Number 4

F. 1 foot 5 inches
G. 1 foot 8 inches
H. 1 foot 9 inches
J. 1 foot 10 inches
K. 2 feet 5 inches


We can do this question in at least two ways.
Use any method you prefer.
The first method is recommended for ACT

\underline{First\:\:Method} \\[3ex] For:\:\:3\:feet\:\:\:8\:inches \\[3ex] First\:\:Step: \\[3ex] Divide\:\:the\:\:last\:\:unit(inches)\:\:by\:\:2...First\:\:Quotient \\[3ex] \dfrac{8\:inches}{2} = 4\:inches \\[5ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:first\:\:unit(feet)\:\:by\:\:2...Second\:\:Quotient \\[3ex] Then,\:\:convert\:\:any\:\:decimal\:\:part\:\:to\:\:inches \\[3ex] \dfrac{3\:feet}{2} = 1.5\:feet = 1\:feet + 0.5\:feet \\[5ex] 1\:foot = 12\:inches \\[3ex] 0.5\:foot = 0.5(12) = 6\:inches \\[3ex] Third\:\:Step: \\[3ex] Add\:\:the\:\:corresponding\:\:units\:\:from\:\:both\:\:quotients \\[3ex] 4\:inches + 6\:inches = 10\:inches \\[3ex] 0\:feet + 1\:feet = 1\:feet \\[3ex] \therefore \dfrac{3\:feet\:\:\:8\:inches}{2} = 1\:feet\:\:\:10\:inches \\[5ex] \underline{Second\:\:Method} \\[3ex] For:\:\:3\:feet\:\:\:8\:inches \\[3ex] First\:\:Step: \\[3ex] Convert\:\:to\:\:the\:\:last\:\:unit(inches) \\[3ex] 1\:foot = 12\:inches \\[3ex] 3\:feet = 3(12) = 36\:inches \\[3ex] 36\:inches + 8\:inches = 44\:inches \\[3ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:result\:\:by\:\:2 \\[3ex] \dfrac{44\:inches}{2} = 22\:inches \\[5ex] Third\:\:Step \\[3ex] Convert\:\:22\:\:inches\:\:to\:\:feet\:\:and\:\:inches \\[3ex] 12\:inches = 1\:foot \\[3ex] 22\:inches = \dfrac{22}{12} \\[5ex] = 1.83333333\:feet \\[3ex] = 1\:feet + 0.83333333\:feet \\[3ex] 0.83333333\:feet\:\:to\:\:inches \\[3ex] = 0.83333333(12) = 10\:inches \\[3ex] \therefore \dfrac{3\:feet\:\:\:8\:inches}{2} = 1\:feet\:\:\:10\:inches
(5.) (a.) A warehouse is 63 yards​ long, 28 yards​ wide, and 8 yards high.
What is the area of the warehouse​ floor? If the warehouse is filled to half its height with tightly packed​ boxes, what is the volume of the​ boxes?

(b.) A room has a rectangular floor that measures 28 feet by 15 feet and a flat ​8-foot ceiling.
What is the area of the floor and how much air does the room​ hold?

(c.) A grain silo has a circular base with an area of 260 square feet and is 19 feet tall.
What is the total​ volume?


Area = Length * Width
Volume = Length * Width * Depth
Volume = Length * Width * Height
Volume = Area * Height
How much air does the room​ hold ⇒ the Volume

(a.) \\[3ex] \underline{Warehouse\;\;Floor} \\[3ex] length = 63\;yards \\[3ex] width = 28\;yards \\[3ex] area = 63(28) \\[3ex] area = 1764\;yard^2 \\[5ex] \underline{Warehouse} \\[3ex] height = \dfrac{1}{2}\;height = \dfrac{1}{2} * 8\;yards = 4\;yards \\[5ex] volume = 1764(4) \\[3ex] volume = 7056\;yard^3 \\[5ex] (b.) \\[3ex] \underline{Floor} \\[3ex] length = 28\;feet \\[3ex] width = 15\;feet \\[3ex] area = 28(15) \\[3ex] area = 420\;feet^2 \\[5ex] height = 8\;feet \\[3ex] volume = 420(8) \\[3ex] volume = 3360\;feet^3 \\[5ex] (c.) \\[3ex] \underline{Grain\;\;Silo} \\[3ex] area = 260\;feet^2 \\[5ex] height = 19\;feet \\[3ex] volume = 260(19) \\[3ex] volume = 4940\;feet^3
(6.) ACT Shown below, a board 5 feet 6 inches long is cut into 2 equal parts.
What is the length, to the nearest inch, of each part?

Number 6

A. 2 feet 5 inches
B. 2 feet 8 inches
C. 2 feet 9 inches
D. 3 feet 0 inches
E. 3 feet 5 inches


We can do this question in at least two ways.
Use any method you prefer.
The first method is recommended for ACT

\underline{First\:\:Method} \\[3ex] For:\:\:5\:feet\:\:\:6\:inches \\[3ex] First\:\:Step: \\[3ex] Divide\:\:the\:\:last\:\:unit(inches)\:\:by\:\:2...First\:\:Quotient \\[3ex] \dfrac{6\:inches}{2} = 3\:inches \\[5ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:first\:\:unit(feet)\:\:by\:\:2...Second\:\:Quotient \\[3ex] Then,\:\:convert\:\:any\:\:decimal\:\:part\:\:to\:\:inches \\[3ex] \dfrac{5\:feet}{2} = 2.5\:feet = 2\:feet + 0.5\:feet \\[5ex] 1\:foot = 12\:inches \\[3ex] 0.5\:foot = 0.5(12) = 6\:inches \\[3ex] Third\:\:Step: \\[3ex] Add\:\:the\:\:corresponding\:\:units\:\:from\:\:both\:\:quotients \\[3ex] 3\:inches + 6\:inches = 9\:inches \\[3ex] 0\:feet + 2\:feet = 2\:feet \\[3ex] \therefore \dfrac{5\:feet\:\:\:6\:inches}{2} = 2\:feet\:\:\:9\:inches \\[5ex] \underline{Second\:\:Method} \\[3ex] For:\:\:5\:feet\:\:\:6\:inches \\[3ex] First\:\:Step: \\[3ex] Convert\:\:to\:\:the\:\:last\:\:unit(inches) \\[3ex] 1\:foot = 12\:inches \\[3ex] 5\:feet = 5(12) = 60\:inches \\[3ex] 60\:inches + 6\:inches = 66\:inches \\[3ex] Second\:\:Step: \\[3ex] Divide\:\:the\:\:result\:\:by\:\:2 \\[3ex] \dfrac{66\:inches}{2} = 33\:inches \\[5ex] Third\:\:Step \\[3ex] Convert\:\:33\:\:inches\:\:to\:\:feet\:\:and\:\:inches \\[3ex] 12\:inches = 1\:foot \\[3ex] 33\:inches = \dfrac{33}{12} \\[5ex] = 2.75\:feet \\[3ex] = 2\:feet + 0.75\:feet \\[3ex] 0.75\:feet\:\:to\:\:inches \\[3ex] = 0.75(12) = 9\:inches \\[3ex] \therefore \dfrac{5\:feet\:\:\:6\:inches}{2} = 2\:feet\:\:\:9\:inches
(7.)

(8.)

(9.)


(10.)

(11.)

(12.)


(13.)

(14.)

(15.)

(16.)

(17.)

(18.)

(19.)

(20.)





Top




(21.)

(22.)

(23.)


(24.)